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Measuring instability in chronic human
intracortical neural recordings towards
stable, long-term brain-computer
interfaces
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Matthew T. Harrison3,4,11 & Leigh R. Hochberg 2,3,5,7,10,11

Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor
control from movement intentions. To translate to practical use, iBCIs should provide reliable
performance for extended periods of time. However, performance begins to degrade as the
relationship between kinematic intention and recorded neural activity shifts compared to when the
decoder was initially trained. In addition to developing decoders to better handle long-term instability,
identifying when to recalibrate will also optimize performance. We propose a method, “MINDFUL”, to
measure instabilities in neural data for useful long-term iBCI, without needing labels of user intentions.
Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed
decoders to control a computer cursor spanning 142 days and 28 days, respectively.We demonstrate
a measure of instability that correlates with changes in closed-loop cursor performance solely based
on the recordedneural activity (Pearson r = 0.93and0.72, respectively). This result suggests a strategy
to infer online iBCI performance from neural data alone and to determine when recalibration should
take place for practical long-term use.

Intracortical brain-computer interfaces (iBCIs) have enabled people with
tetraplegia to control external devices by decoding movement intentions
from neural recordings1–7. iBCIs can also restore communication by pro-
viding rapid point-and-click cursor control for applications such as typing,
web browsing and navigating apps on a tablet8–13, and can enable speech-to-
text decoding for people with severe dysarthria14. Decoders are typically
trained during explicit calibration epochs that allow for simultaneous col-
lection of recorded neural signals during instructed motor intentions6,15–17.
After training, decoding performance varies over time because of complex
biological and device-related instabilities that are not fully understood18,19.
Persistent periods of decreased performance are commonly observed with

existing decoding paradigms and remain one of the challenges that hinders
wider adoption of iBCIs for people with paralysis12,18–22. Restoration of good
control after performance has degraded often requires the user to repeat a
calibration task to retrain the decoder5,18. Reducing the frequency and
duration of explicit recalibration tasks are important for improving the
utility of iBCIs. A step in this direction would be amethod that canmonitor
performance and automatically determine when recalibration or other
measures are necessary.

Here, we show that decoding performance on timescales of tens of
seconds can be estimated from the same recorded neural signal used for
motor decoding. The foundational principle is that persistent changes in
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performance likely result from statistical changes in the recorded neural
signals. Measures of such statistical changesmight then be a good surrogate
for measures of performance changes. We call this approach “MINDFUL”
(measuring instabilities in neural data for useful long-term iBCI). More
specifically, given a target period forwhich average decoding performance is
unknown, we calculate a statistical distance between the distribution of
neural activity patterns during the target period and a similar distribution
collected when performance was known to be good (such as when the
decoder was first trained), as illustrated in Fig. 1a. The MINDFUL score
obtained using Kullback–Leibler divergence (KLD) to compare neural
activity patterns was found to correlate with decoding performance.

Changes in decoding performance can be attributed to many types
of variability in the recorded neural signals. BCI decoding algorithms
typically model rapid fluctuations in neural features (on timescales of
tens of milliseconds) that have no apparent correlation with motor
intention as stochastic noise. Noise is a useful explanation for why
decoding performance changes from instant to instant, but it generally
does not account for persistent changes in (average) decoding perfor-
mance that last seconds or more. We ascribe such persistent changes to
model drift, which we define as changes in the relationship between
recorded neural signals and motor intention. Nonstationarity, feature
shift, and dataset shift are terms that have been used synonymously in the
literature for this type of phenomenon, but they sometimes refer to any
changes in the recorded signals rather than changes in the signal-decoder

relationship23–30. Model drift can be attributed to various factors such as
changes in action potential waveforms18,31,32, neural tuning profiles33–35,
cognitive strategy or plasticity due to learning36–38, material degradation
and tissue responses to the recording device39,40, and array micro-
movements41. The type and magnitude of model drift result in various
forms of performance degradation19, sometimes necessitating decoder
recalibration to restore control. Existing solutions to reduce the need for
recalibration tasks include adaptive decoders that require shorter reca-
libration sessions to maintain or restore stable performance3,10,42, self-
supervised recalibration using retrospective labeling that avoids explicit
recalibration sessions26,27,43,44, and robust decoders that experience less
model drift by extracting stable, time-invariant features from high-
dimensional recordings20–22,45–51 or by adaptively adjusting decoder
parameters12,52.

Themodel drift that influencesperformance is necessarily apropertyof
the joint distributionof recordedneural signals andmotor intention. It is not
a priori clear, however, that model drift related to performance can be
meaningfully identified from the recorded neural signals alone, which is
what MINDFUL attempts to capture. MINDFUL differs from previously
studied statistical tests formodel drift that additionally require knowledge of
movement intention28,53,54. Since true movement intention is often una-
vailable in iBCI applicationswhere peoplewith paralysis control an external
device without being cued to acquire targets (e.g., a cursor on a tablet
computer being used to send an email22), an approach likeMINDFULbased
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Fig. 1 | MINDFUL score correlates with performance over time. a Illustration of
how the MINDFUL metric is calculated. Each dot symbolizes neural features at a
given time bin in any given session, colored by whether the time bin is included for
estimating the reference distribution (yellow), or for comparison (blue), or neither
(gray). The difference in distributions is quantified by Kullback–Leibler divergence
(KLD) between the reference distribution, p0 and the comparison distribution, pi.
bBinned samples of neural featureswere grouped according to decoder performance
in terms of angle error (AE), including data from all sessions. A total of 45 different
distributions were generated, with AE increasing in 4° intervals from 0° to 180°. Bins
with low AE (<4°) were chosen as the reference distribution, and compared against
the other 44 for T11 (left panel) and T5 (right panel). The dotted line which
represents the best linear regression fit, along with the Pearson correlation coeffi-
cients, r, is shown. c The reference distribution was estimated from neural features

(NF) time bins where AE < 4°, limited to day 0 where the decoder was first deployed
for T11, and day 0 and 5 for T5. For subsequent sessions, neural distributions for
comparison were constructed using an overlapping sliding window of 60 s at 1 s
intervals. The KLD (right y-axis) is overlaid onto median AE calculated from the
same sliding window (left y-axis in blue) across all recorded sessions for T11 (left
panel) and T5 (right panel). Gray lines indicate the beginning of the sessions.
Pearson and Spearman rank correlation, r and ρ, respectively, quantify the rela-
tionship between the KLD andmedianAE. Insets present examples of cursor control
of the task in the first and last session. For T11, cursor trajectories for all trials during
a 5-min block are shown. Each color represents a peripheral target in a center-out-
and-back task. For T5, cursor trajectories of the first 20 trials of a block are shown,
along with the corresponding target presented at a random location on the screen in
each trial.
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only on the (marginal) distribution of recordedneural activity ismuchmore
widely applicable.

Here, we present and validate an approach to predict closed-loop
decoding performance without the knowledge of true movement intention.
MINDFUL was applied on longitudinal datasets where performance
changed over long time periods as twopeoplewith tetraplegia, designated as
T11 and T5, were using an iBCI. Each participant used an iBCI to control a
computer cursor to perform target acquisition tasks on a screen. Target
acquisition tasks permit observation of (presumed) motor intention and,
hence, can be used to directly measure decoding performance. The kine-
matic decoder used by each participant was held fixed across all sessions so
that persistent changes in performance could be ascribed tomodel drift and
not to changes associated with the decoder. Briefly, MINDFUL represents
changes in neural distributions relative to a reference distribution where the
decoder was initially applied. MINDFUL is based solely on the recorded
neural activity, without requiring information about the target locations.
The resulting MINDFUL score was highly correlated with changes in
closed-loop cursor performance over time.

Results
Fixed decoders result in initially stable and then unstable per-
formance across months
To first establish a baseline for decoder performance, we deployed fixed
decoders27,51 for the purpose of identifying, over a comparatively long per-
iod, how neural instabilities may lead to deteriorating control. Data were
collected from 15 research sessions, each from a separate day that spanned
across 142 days, of T11 performing a center-out-and-back task using a fixed
RNN (recurrent neural network) decoder, as previously described51 (see
“Methods”). As part of another study27, T5 performed a random-target task
for six sessions spanning 28 days using a fixed linear decoder (see “Meth-
ods”). To quantify closed-loop cursor performance, angle error (AE)
between the inferred intended directional vector (cursor-to-target position)
and the decoded velocity vector was used (see “Methods”). AE is a valuable
metric for capturing performance as it is sensitive to instantaneous cursor
direction change, and can be averaged across any range of time. T11
achieved stable, high-performance online cursor control for the first three
months. The median AE per trial for T11 for sessions during the first three
months was lower than later sessions on average (trial day 658–751:
26.8° ± 22.6°; trial day 758–800: 88.4° ± 46.1°; p < 0.001; Wilcoxon rank
sum). For T5, the first three sessions demonstrated lower AE than the later
three sessions (trial day 2121–2128: 39.6° ± 23.9°; trial day 2133–2149:
58.8° ± 31.7°; p < 0.001,Wilcoxon rank sum). Brief recovery fromadecrease
in performance was observed in both participants (93 days after the initial
session for T11 and 28 days after the initial session for T5), indicating fixed
decodersmaynot necessarily result in a steady decline in cursor control over
time (Supplementary Fig. 1).

Comparing distributions of neural activity patterns
MINDFUL is based on comparing the distribution of recorded neural
activity patterns in a target dataset (usually with unknown decoding per-
formance) to a similar distribution in a reference dataset (usually with
known and good decoding performance). Figure 1a provides an illustration.
The choice of neural features and measures of statistical dissimilarity are
important for practical use. Here we used a measure of statistical dissim-
ilarity based on the well-known Kullback–Leibler divergence (KLD). In
principle, other measures of dissimilarity could be used (see “Methods”).
Neural features were all derived from the inputs to the kinematic decoder:
threshold-crossing spike rate and spike power for T11, and spike rate only
for T5, extracted in 20ms non-overlapping bins (see “Methods”).

Statistical distance between neural activity patterns correlates
with performance
Having established datasets where fixed decoders result in periods of both
stable and fluctuating closed-loop performance, we first investigated the
underlying premise of MINDFUL that the distribution of neural activity

patterns varies systematically with decoder performance. First, neural fea-
tures pooled from all sessions were categorized into groups based on per-
formance in terms of instantaneous (20ms) AE. KLD was computed to
assess the differences in neural feature distribution at instances with lowAE
(<4°) to other distributions at instances with varying levels of AE (see
“Methods”). For both participants, the relationship between the KLD and
performance was found to be remarkably linear and strongly correlated
(T11: Pearson r = 0.985, p < 10−33; T5: Pearson r = 0.983, p < 10−31; see
Fig. 1b).Neural feature distributions at instanceswith lowAEdemonstrated
high similarity (lower KLD) to the reference distribution of neural features
at instances with low AE, and the KLD increased linearly as the compared
neural feature distributions were drawn from instances with larger AE.

This is a proof-of-concept that statistical distance between distribu-
tions of neural activity patterns can correlate strongly with decoding per-
formance. It does not, however, provide a measure of performance that
would be useful in a clinical setting for detecting persistent changes in
decoding performance that might arise frommodel drift. Instantaneous AE
must be known a priori to define the collections of neural features that are
compared in each point in Fig. 1b and MINDFUL is designed to be used
in situations where AE is not known, at least not for the target distribution.
Moreover, AE can be a result of noise (transient variability) or model drift
(persistent changes), or both. Figure 1b does not distinguish among these
even though model drift is the phenomenon of interest here. The linear
relationship observed in Fig. 1b canbe recreated in simulationusingnoise or
using model drift or using both (see Supplementary Fig. 2).

MINDFUL correlates with decoding performance
Towards developing a predictor of decoder performance based on neural
activity for online applications, we define a measure called the MINDFUL
score to study the effect of drifts that persist over timescales relevant to
continuous iBCI use. Using the same concept as illustrated in Fig. 1a, but
instead of grouping by AE as in Fig. 1b, neural feature distributions were
estimated from collections of time bins aggregated using a 60-s sliding
window, regardless of the performance during that window. The reference
distribution is also estimated from instances of lowAE as in Fig. 1b, but it is
sub-selected from only the initial session(s) when the decoder is first
deployed. As time progresses, we update the MINDFUL score which is
based on the KLD between the reference distribution and the subsequent
neural feature distributions from the sliding window (see “Methods”). To
validate this method, the MINDFUL score is correlated against the median
AE calculated in the same 60-s sliding intervals as in estimating the neural
distributions. Strong correlations were found between theMINDFUL score
and the median AE across sessions, especially for T11 (see Fig. 1c. T11:
Pearson r = 0.91, p < 0.001; Spearman ρ = 0.90, p < 0.001; T5: Pearson
r = 0.59, p < 0.001; Spearman ρ = 0.60, p < 0.001; see “Methods”). This
suggests that MINDFUL can be a viable measure for tracking performance
in real-time, as the statistical properties of neural features aggregated over a
longer timescale window reflect information about how the decoder per-
formance drifts over time without needing to know performance.

Correlation to performance increases by combining neural features
anddecoderoutputs. The neural features (NF) in Fig. 1b, c were derived
from principal components analysis (PCA; see “Methods”) and need not
reflect the sources of variability most predictive of decoder performance.
Using features more closely related to the decoder output might
strengthen the relationship between the MINDFUL score and AE. One
such feature is the output from the decoder itself—in this case, the pre-
dicted 2-dimensional velocity vector, X̂. Note that X̂ alone cannot be used
to define AE. It is the relationship between X̂ and the true intended
direction that defines AE. Nevertheless, changes in the distribution of X̂
over a time interval may reflect changes in decoder performance. Same as
Fig. 1c, reference distribution was estimated from sub-selected time bins
of low AE from initial session(s), and target distributions were estimated
from a 60-s sliding window. Except we used features from X̂ instead of
NF. Using only the 2-dimensional feature X̂ showed reduced correlations
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between the MINDFUL score and AE than from just NF for T11, but
increased for T5 (Fig. 2a. T11: Pearson r = 0.464, p < 0.001; Spearman
ρ = 0.407, p < 0.001; T5: Pearson r = 0.704, p < 0.001; Spearman ρ = 0.763,
p < 0.001). When using the 4-dimensional feature created by con-
catenating X̂ and X̂lag , where X̂lag comes from the previous time bin of X̂
(20 ms earlier), there was an increased correlation to AE for both T11 and
T5 (Fig. 2b. T11: Pearson r = 0.819, p < 0.001; Spearman ρ = 0.840,
p < 0.001; T5: Pearson r = 0.702, p < 0.001; Spearman ρ = 0.765,
p < 0.001). Lastly, the combination of inputs and outputs of the decoder,
i.e. the low-dimensional NF, X̂, and X̂lag resulted in the highest correla-
tion between KLD and AE for both participants (Fig. 2c. T11: Pearson
r = 0.926, p < 0.001, Spearman ρ = 0.913, p < 0.001, T5: Pearson r = 0.719,
p < 0.001, Spearman ρ = 0.759, p < 0.001).

The MINDFUL score reflects changes in feature tuning. We next
investigated the types of changes in neural data captured by the
MINDFUL score. Changes in directional tuning have been shown to
reduce performance in both online and offline BCI studies10,12,18–22.
Directional tuning was quantified by fitting a cosine function to nor-
malized neural features to obtain estimates of preferred direction (PD)
and modulation depth (MD)33,55–57. 154 out of 384 features and 85 out of
192 features, for T11 and T5 respectively, had significant directional
tuning for at least half of all recording sessions (F-test, p < 0.05, see
“Methods”). Changes in tuning in these features were tracked over time
(see “Methods”). (Here we focused on the tuning of individual features,
but we also used a different approach to show that changes in the

conditional distribution of population activity given motor intention are
statistically significant; see Supplementary Fig. 3.)

Tuning properties shifted gradually for the majority of features in T11
(Fig. 3a, b). 125 out of 151 tuned features exhibited significant change in
both MD and PD35 in at least one session (see “Methods”). Fitted tuning
curves across sessions for two example features illustrated changes in
modulation depth and modulation lost, respectively for T11 (Fig. 3c). The
average change in PD across these features was larger on days where per-
formance was worse (day 7–93: 46.8° ± 31.2°; day 100–142: 62.4° ± 34.3°;
p < 10−7 Wilcoxon rank sum). The average absolute change in MD in later
sessions was also found to be significantly larger (day 7–93: 0.107 ± 0.067;
day 100–142: 0.159 ± 0.129; p < 10−8, Wilcoxon rank sum).

Similar to T11, gradual changes in T5’s tuning properties were also
observed (Fig. 3d, e). Some features illustrated changes in eitherMD or PD,
or both (Fig. 3f). 71 out of 85 tuned features exhibited significant change in
both MD and PD in at least one session. The average change in PD across
these features was larger on days where performancewas worse (day 12 and
14: 69.9° ± 40.7°; day 5, 7, and 28: 58.1° ± 36.6°; p = 0.0346, Wilcoxon rank
sum). Average absolute change in MD was not found to be significant (day
12 and14: 0.147 ± 0.099; day5, 7, and28: 0.139 ± 0.093; p = 0.664,Wilcoxon
rank sum).

To quantify the changes in encoding on a population level, we use
tuning maps56,58, defined by matrices of fitted tuning parameters of sig-
nificantly tuned features on each session. Tuning similarity between days
was assessed by calculating the correlation between the corresponding
tuning maps (see “Methods”). In general, nearby sessions in time with
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Fig. 2 | Incorporating decoder outputs in the MINDFUL score maintains a high
correlation with performance. a The KLD (right y-axis) between distributions of
decoded directional vectors, X̂, with respect to the sub-selected time bins from
the first session(s) overlaid onto median AE (left y-axis in blue) across all recorded
sessions for T11 (left panel) and T5 (right panel). Subsequent neural distributions

and median AE were updated every 1 s over a 60-s sliding window. Pearson r, and
Spearman rank correlation coefficients ρ, between KLD and median AE are shown.
bTheKLDbetween distributions of X̂ and X̂lag overlaid ontomedianAE. cTheKLD
between distributions of the combination of derived neural features (as shown in
Fig. 1c), decoded directional vectors, X̂, and X̂lag , overlaid onto median AE.
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similar performance were more correlated. For T11, tuning maps among
early sessions (up to day 93) with high performance were highly correlated,
as well as among later sessions with low performance, but not across these
two epochs (Fig. 3g). ForT5, sessions thatwere closer together in time (along
thediagonal)hadhigher correlation than those further apart (Fig. 3h).These
results suggest that model drift (tuning changes) occurred across sessions.
We were thus interested in determining how the MINDFUL score reflects
changes in tuning similarity. To compare tuning similarity between ses-
sions, we obtain ameanKLDbetween each pair of sessions. Instead offixing
a reference distribution, pairwise KLDs of neural features between sessions
were calculated using a sliding window of 60 s updating every 10 s (see
“Methods”). The KLDs from the same session were averaged to get a mean
of the neural distribution difference between pairs of sessions.

ForT11,pairs of sessions closer in timehad smaller distribution shifts in
terms of mean KLD, while pairs of sessions further from each other in time
had larger distribution shifts, which consequently strongly correlated with

tuning similarity (Pearson r =−0.812, p <10−30, Fig. 3i). For T5, the same
trendwas observed, except for the pairs of sessions which compared the first
three sessions to the last session where cursor control had recovered (dots in
blue shades). The correlation between the mean KLD and tuning similarity
was also strong and significant (r =−0.776, p < 10−4, Fig. 3j). Together, these
findings suggested that theMINDFUL score usingKLDcaptures day-to-day
changes in directional tuning, even though the metric can be calculated
without information reflecting target position or movement intentions.

The MINDFUL score captures low-dimensional neural latent
space drifts. We further investigated how MINDFUL relates to the
changes in the low-dimensional neural latent space using demixed
principal component analysis59. The top two direction-dependent prin-
cipal components (PCs) on the neural population from decoder day 0
were calculated to compare changes across sessions by projecting the
neural population from subsequent sessions on this PC space (see
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Fig. 3 | Changes in feature tunings across sessions correlate with KLD. aChanges
in preferred directions (PD) and b modulation depth (MD) of significantly tuned
features used in the decoder (relative to the tuning of the first day for which the
feature was significantly tuned) for T11. Features were ordered by hierarchical
clustering to visualize groups of features with similar tuning changes behavior (see
“Methods”). Gray color indicates features that were not significantly tuned in that
session. c Fitted cosine tuning curves for sample units across days for T11 illus-
trating changes in MD and channel dropout, respectively (color curves); Triangle
markers denote PDs for sessions with significant tuning. dChanges in cosine tuning
PD and e MD for significantly tuned features used in the decoder for T5. f Fitted

cosine tuning curves for sample units across days of T5 illustrating changes in MD
and PD, respectively. g T11 Tuning similarity across days represented by inter-
polated Pearson correlations between pairs of tuning maps (see “Methods”). h T5
tuning similarity across session days. i T11 mean KLD of neural distributions
between sessions negatively correlates with the tuning similarity (Pearson
r =−0.812, p < 10−30 , see “Methods”). Each dot corresponds to a pair of sessions
with the color indicating the number of days apart. j T5 mean KLD of neural
distributions between days negatively correlates with the tuning similarity (Pearson
r =−0.776, p < 10−4 ).
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“Methods”). The average neural trajectories per target directions became
less distinct as the session days progressed, reflecting changes in the
underlying population activity over time consistent with the decline in
task performance (see Fig. 4). The amount of direction-related neural
activity in each session was quantified by the variance accounted for
(VAF) by the top two direction-dependent components on the subspace
of day 0. For T11, the VAF was initially 50.0% on day 0 and remained
above 20% on days in which clear separation of target trajectories was
observed. As the decoder performance declined, the VAF dropped to
4.4% on decoder day 142 (Fig. 4a). This change in neural representation
in low-dimensional space is strongly and significantly correlated to the
mean KLD per session (Pearson r =−0.892, p < 10−5). The mean KLD
between day 0 and other sessions is calculated the same way as the mean
KLD in the previous section (averaged KLDs using a sliding window of
60 s updating every 10 s, see “Methods”). For T5, VAFwas initially 42.2%
on day 0, and subsequently dropped to 2.9% and recovered to 11.3% on
the last session (Fig. 4b). There was also a strong and significant corre-
lation between the top 2 VAF and mean KLD (Pearson r =−0.858,
p = 0.0029).

In addition to correlating with model drift in neural data, MINDFUL
was found to detect large momentary deviations in the signal, likely

attributable to device-related reasons such as signal transmission errors5.
The sharp spikes in both KLD and median AE in T11 neural data (Fig. 2)
correspond to time bins during outlier trials (see Supplementary Fig. 4).
Outlier trials were defined as havingmore than a 5% drop of wireless neural
data packets or large “neural” responses greater than 8 standard deviations
from the mean. Furthermore, when excluding these trials, the MINDFUL
score was still highly correlated to the median AE (see Supplementary
Fig. 5). This suggests that ourmethod is capable of tracking bothmodel drift
over time, as well as short timescale technical-related variability. Although
instantaneous events are less relevant for decoder recalibration, amethod to
capture these events may prove useful in other iBCI troubleshooting with
both the current and future fully implanted systems.

Selecting reference andwindow length further optimize correlation.
We explored the role of sub-selecting time bins with different AE ranges
as the reference in theMINDFUL pipeline. When limiting the reference
to the collection of time bins with low AE only (0–4°) as shown in
Figs. 1c and 2, there are strong correlations between the KLD of derived
neural features (NF+ X̂ + X̂lag ) to AE. It was higher thanwhen using all-
time bins of any cursor control quality for both participants (see Fig. 5a).
This also held true when taking other combinations of derived neural

T11

a

b decoder day 12
VAF = 5.7% | KLD = 1.89

decoder day 14
VAF = 2.9% | KLD = 2.1

decoder day 28
VAF = 11% | KLD = 1.29

decoder day 0
VAF = 42% | KLD = 0.217

decoder day 5
VAF = 21% | KLD = 1.27

decoder day 7
VAF = 11% | KLD = 1.2

decoder day 0
VAF = 50% | KLD = 0.407

decoder day 34
VAF = 30% | KLD = 0.807

decoder day 93
VAF = 21% | KLD = 0.632

decoder day 7
VAF = 44% | KLD = 0.399

decoder day 44
VAF = 27% | KLD = 0.854

decoder day 100
VAF = 6.6% | KLD = 3.16

decoder day 14
VAF = 32% | KLD = 0.464

decoder day 51
VAF = 32% | KLD = 0.778

decoder day 112
VAF = 6.1% | KLD = 2.44

decoder day 17
VAF = 34% | KLD = 0.545

decoder day 57
VAF = 25% | KLD = 1.56

decoder day 125
VAF = 6.7% | KLD = 2.37

decoder day 31
VAF = 23% | KLD = 0.917

decoder day 69
VAF = 13% | KLD = 1.73

decoder day 142
VAF = 4.4% | KLD = 2.6

T5

Fig. 4 | Instability reflected in neural latent space. aProjection of neural features of
subsequent sessions onto the top two task-dependent PCs latent space of neural
features on decoder day 0 using dPCA. Fine lines are trial trajectories and bold lines
are trial averages per goal directions. Different colors correspond to the goal

direction. b Projection of neural features for T5. For comparison simplicity, the
random-target task was visualized and colored by discretizing the goal directions of
each trial into eight even movement directions as in a center-out-and-back task.
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features into calculating KLD (Supplementary Table 1). In addition, sub-
selecting instances with high AE (50°–100°, 100°–180°) as the reference
distribution reduced the KLD-AE correlation for both participants,
especially in T5.

Another important consideration for improving the correlation
between MINDFUL and performance is the duration of neural data
required to obtain a reasonable representation of neural distribution. Since
neural activity recorded in the precentral gyrusmodulateswith the direction
of intended movement, too small of a window length may reflect task-
dependent differences in reaching different directions, rather than a per-
sistent model drift that affects cursor control regardless of trial direction. A
longer window length can avoid this issue when directional distribution
differences are averaged out over a longer period. However, the KLDwould
be smoothed out if the window length is too long, resulting in a larger delay
to detect the need to update the decoder. To balance between accuracy and
efficiency for online implementation, the optimal duration was empirically
determined to be at least 60 s (Fig. 5b), where theKLD-AEcorrelationbegan
to plateau, and longer windows did not offer a higher correlation. Using a
60-s window to estimate neural distributions provides a sufficiently large
number of samples to average out directional-dependent differences due to
variations in trial-to-trial movement directions.

MINDFUL is robust to the reference task. We repeated the analysis of
tracking the correlation of MINDFUL to performance (see Fig. 2c) for
T11 except we used reference data collected during different tasks. The

comparison data collected during center-out-and-back tasks remains the
same as in Fig. 2c. Since the relationship between neural activity and
movement can be context and task-dependent60,61, it is unclear to what
degree the reference and comparison tasks must be matched for
MINDFUL to correlate well to performance. MINDFUL is likely to be
most useful in practice if it is robust across tasks and contexts. Collecting
reference data from a different task was not part of our original experi-
mental design, but for T11 the appropriate data was collected for other
purposes. In addition to the center-out-and-back task, T11 used the same
fixed decoder for random-target tasks (day 7), analogous to T5’s task
described above, and during personal iBCI use (i.e., browsing the web;
day 0; see “Methods”). Despite different cursor tasks being used as the
reference from the target distributions, MINDFUL still correlates highly
to performance, even without the help of subsampling based on AE (see
Fig. 6b, c). This is also true when all three types of tasks were combined
together to estimate the reference distribution (mixed tasks, see Fig. 6d).
The range of KLD is slightly higher for the random-target task, and lower
for personal use andmixed tasks. This suggests that MINDFULmight be
robust to cursor task changes for reference.

Discussion
Apparent model drift during chronic iBCI use—resulting from changes in
the information encoded in neural ensembles, changes in the recorded
neural elements themselves, or changes in the recording devices—is one of
the major challenges for developing decoders that will provide stable,
accurate cursor control for long-term use by people with paralysis. Existing
solutions to mitigate more substantial model drift have limitations. Explicit
recalibration comes at the expense of interrupting the user in the midst of
iBCI use to collect additional data for decoder training. While background
recalibration using self-supervised machine learning algorithms doesn’t
require the user to performdaily repetition of a task, it relies on stable online
performance for effective pseudo-labeling. Currently, one cannot predict
accurately themoment atwhich thedecodermay fail to sustainperformance
and thus require a supervised recalibration. Similarly, robust algorithms
reduce the need for frequent retraining but may require retraining of the
model de novo. MINDFUL fills in the gap in the development of a better
decoder recalibration strategy for practical everyday use by identifying,
quantifying, and monitoring the degree of neural recording instability that
contributes to the degradation of real-time decoder performance.

The MINDFUL score, which is based on measuring the
Kullback–Leibler divergence (KLD) between distributions of neural fea-
tures, reflects online performance without the need to incorporate knowl-
edge of intended targets. In two participants, the MINDFUL score was
strongly correlated to online angle error during iBCI cursor control across
sessiondays spanningup to fourmonths (T11) or onemonth (T5).With the
goal of translating this method to an online setting for the purpose of
personal iBCI use, the MINDFUL score can reflect performance accurately
for different cursor tasks examined in different participants (Fig. 2).
Importantly, theMINDFUL score is consistent with tuning and latent space
changes which cannot be directly measured without information about
movement intention. This suggests that the MINDFUL score provides an
intrinsicmeasure to trackmodel drift affecting decoder performance during
long-term iBCI use.

Our study confirmed the well-acknowledged observation that model
drift can impact online performance when the decoder cannot accom-
modate neural changes over long-term iBCI use.Model drift was quantified
by tracking changes in tuning and latent space representations of neural
population activity across sessions. The MINDFUL score was found to be
highly correlated with both of these measures. It should be noted that our
method did not track mean firing rate shifts which are known to correlate
with declines in decoder performance19. In our datasets, adaptive mean
corrections such as z-scoring or bias correction were applied to the neural
features during online cursor control to combat this type of model drift (see
“Methods”). Therefore, performance drops observed in this dataset were
largely due to other types of model drift. The MINDFUL score, which
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measures changes in the distribution ofmean-corrected neural data, aims to
discover model drift such as changes in tuning or latent representation
which may necessitate a decoder recalibration to restore control. Further-
more, since MINDFUL was designed to be applied during online iBCI
control where threshold crossings were primarily used as neural
features62–65, we chose to investigate the functional stability in the thre-
sholded neural activity’ tuning properties and latent neural representation
rather than neuronal stability of discriminated single units processed via
spike sorting techniques18,31.

Another plausible contributor to the observed changes in neural dis-
tributions may be participants’ compensatory neuro-motor strategies in
response to suboptimal cursor control. Non-human primates that
encounter artificial perturbations in a previously learned BCImotor control
task elicit new neural patterns with learning54,66–68. Neural activity during
closed-loop, online control contexts is also different from open-loop, offline
control which has added real-time visual feedback69,70. In this closed-loop
iBCI study, when participants experienced a directional bias in cursor
kinematics, it is plausible that the participants might compensate for
decoding errors with different strategies such as moving against the bias
(eliciting a larger magnitude of velocity), temporarily pausing attempting
movement control, or moving towards the bias in hope to reset the bias
(when automatic bias correction is applied). These alternative strategies are
valid responses in attempting to improve control, but they may result in a
larger change in the distribution of neural features, amplifying the original
model drift when the intention context remains consistent. This highlights
one of the challenges when studyingmodel drift during closed-loop control
when the ground-truth intended movement cannot be observed indepen-
dently of the decoded outputs.

While theMINDFUL score based on KLD consistently correlates with
performance and changes in neural representation, there are a number of
noticeable differences in the results between subjects. First, the relevance of

the chosen neural features appears to be different for different participants.
For example, for participant T11, the MINDFUL score derived from the
neural features is more strongly correlated to the AE than the MINDFUL
score derived from decoded velocity features, slightly improving when
combining both features; for participant T5, the MINDFUL score derived
from the decoded velocity features is more strongly correlated to the AE
than neural features alone and is not substantially improved by adding the
neural features (Figs. 1c and 2). The features used, choice of decoder and
cursor task, and duration of data collection, can all influence the value of
KLD,hence correlation toAE. Second, there arenoticeable differences in the
range of KLD between subjects ([0, ~2.75] for T11 and [0, ~0.9] for T5 in
Fig. 1c). It is possible that variability between subjects and between the
dataset may affect the range of KLD inMINDFUL. Interestingly, the range
of KLD calculated by binning by performance is much smaller than cal-
culated across time ([0, ~0.3] for both participants; Fig. 1b). In Fig. 1b, since
data was collected across a wider range of time, both for the reference and
comparison distributions, any model drift would likely cause these dis-
tributions tohave larger variance and, hence, smallerKLD. In support of this
conjecture, we found that the determinant of the empirical covariance
matrix of the reference distribution by binning by performance (Fig. 1b) is
3.4 times larger than the reference set to the first session (Fig. 1c) for T11,
whilst for T5, these determinants are relatively equal. Despite a number of
methodological differences between the datasets and chosen features, it is
encouraging that MINDFUL robustly measured model drift for both
participants.

Choosing an appropriate reference when calculating KLD influences
the reliability of predicting decoder performance using MINDFUL. First,
selecting low AE time steps for reference was found to provide a higher
correlation between the KLD and AE (Fig. 5a). Using low AE as a reference
helps to identify the model drift where the neural-kinematics distribution
during decoder training has changed from that during testing when the
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as in Fig. 2c except time bins were not sub-selected to have AE less than 4°.
bReferencewas estimated fromT11 performing a random-target task for 10minutes
on day 7, using the same fixed decoder. Task setup is very similar to T5’s data except
with varying target sizes. T11 did not perform this task on day 0. c Reference was
estimated from when T11 was using the iBCI for personal desktop use, such as
browsing the internet, on day 0. Around 16 minutes of active cursor control period
was included. d Reference was set to a combination of the above-mentioned data
(concatenating random-target task, personal use, and center-out-and-back task).
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decoder was applied online. The training data of the decoder typically
represents periods of relatively high performance: For T11, the fixed
RNN decoder was trained on selected historical data with angle error <45°,
while T5’s decoder was initially trained on open-loop blocks and then
immediately updatedwitha closed-loopblock27,51.Asneural representations
shift from the training distribution, the decoder is more likely to produce a
subpar performance with a higher error rate. Therefore, when sub-selecting
only high-performance data as the baseline, future neural shifts can bemore
accurately reflectedby theKLD.However, there exists subject variability and
ambiguity regarding precisely how much data is needed for reference. For
example, for participant T5, using time bins with high AE (50°–100° or
100°–180°) as reference resulted in amore drastic decrease in the correlation
between KLD and AE than T11. Also, using the first two sessions as a
reference resulted in a slightly higher Pearson correlation than just the first
session alone for T5 (Supplementary Fig. 6). Nevertheless, assuming that a
newly trained decoder returns decent initial performance, our findings
suggested that data from high-performance time bins from the initial ses-
sion where the decoder was first applied would be an appropriate choice for
the reference.

In this study, the MINDFUL score based on neural activity alone
reflects performance in cases where fixed decoders were used online.
However, it remains unclear how it can be applied to other types of adaptive
or robust decoders that aim to stabilize decoding by periodically realigning
neural data to the initial session. In such circumstances, if MINDFUL is
calculated before data alignment, it may not directly correlate to perfor-
mance as adaptive alignment may keep AE low even when neural repre-
sentations are changing.However,MINDFUL could still be useful in several
ways. First, MINDFUL may be applied to transformed neural data after
manifold alignment methods. Even if alignment approaches will result in a
reduction in KLD (KLD is a common choice of loss function), MINDFUL
can measure the remaining differences. Second, if the features used
in MINDFUL are the outputs from the adapted decoder, rather than non-
adapted features such asPCAcomponents, thenMINDFULmight continue
to correlate to online performance despite decoder adaptation. Lastly,
instead of periodically aligning (or recalibrating),MINDFUL can be used to
signal the need for recalibration when model drift is detected. Future
experiments with other closed-loop adaptive decoders will be required to
test these approaches.

We proposed a statistical method to detect model drift when fixed
decoders were used during consecutive days-to-months of iBCI cursor
control by two people with tetraplegia. This is crucial for the goal of clinical
translation of iBCI systems for practical everyday use, as it requires stable
and reliable decoders to maintain high performance despite drifts in neural
representations over time. MINDFUL was shown to be able to track model
drift based on the intrinsic properties of neural features and decoder out-
puts, which correlates to long-term changes in decoder performance,
without needing to be aware of the movement intention. This approach is
well-suited for future online adaptive iBCI systems aiming to provide
continuous long-term control in a practical, personal setting outside of
standardized research sessions, where it is not possible to directly track
intended movements. For instance, MINDFUL and related methods could
beused to trigger either auser-engagedorbackgroundupdate as thedecoder
becomes less effective.

There are additional several considerations for applying the MIND-
FUL score online. First, during personal iBCI use, cursor movement
directions could be less symmetric and more sparsely distributed than the
cursor tasks in this study. When sub-selecting reference time bins based on
movement direction (up/down/left/right), KLD became higher in magni-
tude andgenerally less correlated toAE (seeSupplementaryFigs. 10 and11).
A longer time window or careful time bin selection for both reference and
target distributions may be needed to reduce the directional-related differ-
ences. In addition, we believe that MINDFUL may be useful for detecting
changes in the relationship between the signal and the decoder(s), even
when multiple disparate tasks and contexts are incorporated into the
reference distribution. For T11, MINDFULwas found to be robust to using

neural reference data collected during different cursor tasks, including
periods of personal iBCI use forwhichwehadno control over the balance of
intendeddirections or angle error.Wedidnot havedata to investigate this in
T5. Future work will investigate this robustness in additional participants
andmorevaried changes in tasks and contexts, all ofwhichwill be important
for practical iBCI use.

Second, as previously described, the range of KLD varies between
participants. It will be crucial to set an appropriate threshold for triggering a
recalibration for individual users. One possible strategy to set a user-specific
threshold would be to initialize a threshold based on an AE cut-off from
previously collected datasets and iteratively fine-tune the threshold sensi-
tivity by incorporating the user’s feedback. Lastly, the above-mentioned
large noise instances which can be easily detected byMINDFUL should not
trigger a recalibration, as it does not imply a change in the neural-kinematic
relationship estimated by the decoder. The frequency or pattern of these
events could, however, inform further iBCI development.

Methods
Human participants
The Institutional Review Boards of Mass General Brigham/Massachusetts
General Hospital, Brown University, Providence VA Medical Center, and
Stanford University granted permission for this study. Intracortical neural
signals were recorded from participant T11, a 37-year-old right-handed
male with a C4 AIS-B spinal cord injury (SCI) that occurred approximately
11 years prior to study enrollment, andT5, a 65-year-old right-handedmale,
with a C4 AIS-C SCI that occurred approximately 9 years prior to study
enrollment. Both participants are enrolled in the BrainGate2 pilot clinical
trial (NCT00912041), permitted under an Investigational Device Exemp-
tion (IDE)by theUSFoodandDrugAdministration (InvestigationalDevice
Exemption #G090003; CAUTION: Investigational device. Limited by
Federal law to investigational use). Informed consent was obtained from all
participants. All research sessions were performed at the participant’s place
of residence. All ethical regulations relevant to human research participants
were followed.

Intracortical neural recordings and neural features
Each participant had two 96-channel microelectrode arrays (Blackrock
Neurotech, Salt LakeCity,UT)placed in thedominant (left)hand/armknob
areaof theprecentral gyrus2. T11’s intracortical neural signalswere recorded
via a wireless broadband iBCI system71 while T5’s neural signals were
acquired via the cabled iBCI system. The average signal across the array per
electrode was subtracted with a common average reference filter to reduce
common mode noise. Neural features were extracted from the neural
recording in 20ms non-overlapping bins. For real-time decoding and off-
line analysis, multi-unit threshold-crossing spike rates (RMS <−3.5) per
electrode were used for T5, and two types of features: spike rates (RMS <
−3.5) and power in the spike band (250–5000Hz) per electrode were used
for T11. Across the 15 T11's sessions, 34 of the 1840 trials were labeled as
outlier trials, which were defined as havingmore than a 5% drop of wireless
neural data packets or large “neural” responses greater than 8 standard
deviations from the mean. No outlier trials were identified in T5’s sessions.

BCI behavioral task
To assess decoder performance for cursor trajectories, T11 performed a
closed-loop 2D point-and-click center-out-and-back task for each of
15 sessions on separate days that spanned 4 months (trial days 658–800).
For each trial, T11 was prompted to attempt hand or finger movements to
continuously move the neural cursor from the center target to one of the
eight pseudo-randomly selected peripheral targets and to then attempt a
hand gesture (right index finger down) to click on the target. T11 was
encouraged to maintain the same set of motor imagery for all sessions
presented in this study. Upon target selection, in the next trial, T11 was
asked tomove the cursor back to the center target. A trial is successful when
the cursor is inside the target and a click action is decoded. Otherwise, a trial
is considered failed after a 10-s timeout. Each session consists of two 5-min
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task blocks, except for trial day 751with only one block. The cumulative task
time of all sessions is 145min, with a total of 1840 trials. Neural features,
cursor position, target position, and decoder velocity outputs were logged.

T5 performed a closed-loop 2D random-target selection task with a
fixed-size target appearing in random locations on the screen. T5 attempted
to move the cursor over the target and dwell on it for a consecutive 500ms
period before the 10-s timeout to complete the trial. Audio feedback was
provided right after the endof a trial to indicate trial success.Anewrandom-
target is immediately presented with no delay. This task was repeated for
6 sessions on separate days that spanned 28 days (trial days 2121–2149).
Each session consistsof two to four 4-min closed-loopblocks,whichprovide
84min of 1200 total trials across all sessions. Training blocks for calibrating
the decoder on trial day 2121 were not included in this study.

Angle error
The instantaneous angle error is defined as the absolute angle difference
between the inferred intended directional vector (cursor position to target
position) and the decoded velocity vector, X̂ (best = 0°;max = 180°). In each
60-s interval to estimate the neural distribution for calculating the KLD, the
median of the angle error of time bins within the same interval is
also computed. The median is chosen over the mean because AE in our
datasets for both participants is not uniformly distributed between 0° and
180° (skew towards lower AE).

Closed-loop neural decoding
Decoders in this study were previously described in refs. 27,51. Briefly, for
T11, an LSTMdecoder was used to infermovement intentions from neural
recordings. An LSTM is a variant of recurrent neural network (RNN) with
improved capability for long-term temporal dependencies72. Previous stu-
dies described the advantage of using an RNN for neural decoding over
linear methods such as the Kalman filter20,73–75. The LSTM decoder was
trained and validated on closed-loop point-and-click cursor tasks from the
18 most recent sessions of T11, spanning 70 days from trial day 576 to 646.
Of these sessions, only task blocks with amedian angle error of less than 45°
were included, which yielded a total of 331minutes or 8441 trials of training
data. Input neural features were passed directly to the RNN layer whose
outputs went to three densely connected activation functions, decoding the
x- and y-velocity and the distance to the target. During online control, each
neural feature was adaptively z-scored using the mean and variance from a
3-minute rolling average window.

Clicks were decoded with a linear discriminant analysis (LDA) fol-
lowed by a hidden Markov model. The LDA calculates a subspace that
maximally discriminates between a click and amovement state. Coefficients
were estimated with a regularization term of 0.001. Emission means and
covariances used the empiricalmean and covariance from the training data.
The selected z-scored neural features were smoothed with a 100ms boxcar
window before being projected onto the LDA space. The estimated class
probabilities were normalized using the SoftMax function and then
smoothed with a 400ms boxcar window. A click is returned when the click
probability is above a threshold of 0.98.

For T5, non-overlapping 20ms-binned extracted features were fed
through a linear regression model trained to predict the cursor-to-target
distance. An initial decoder was trained based on T5’s neural activity while
he engaged in an open-loop block on day 0 (trial day 2121). This decoder
was then used to drive closed-loop control in a subsequent block. The final
decoder parameters were then updated based on the first closed-loop block,
and theywere fixed for later closed-loop blocks and future sessions. The raw
decoded velocity vt was exponentially smoothed with the running velocity
average X̂t via X̂t ¼ αX̂t�1 þ 1� αð Þβvt , where α is the smoothing factor
and β is the gain parameter. Smoothing and gain were manually adjusted
during the first session and fixed on subsequent days.

To accommodate for session-to-session variability in recordings, we
appliedper-channel z-scoring at every timebin forT11 and abias correction
for T5. For T11,mean and variance were initialized from the previous block
and adaptively updated themusing a 3-min rollingwindow.Neural features

were decoded into cursor velocities by a real-time LSTM decoder. For T5, a
bias correctionwas applied tomitigatemean shifts in the decoded output by
subtracting a running estimate of the decoder bias from the velocity outputs
(with an adaption rate of 0.3)11. Bias correction was first initialized from the
previous blocks. The intercept term in the decoder is then updated to the
negative resulting bias vector (obtained by pushing the mean firing rate
vector through the decoder weights).

Derived neural features
MINDFUL can be based on any collection of neural features. In this paper,
we experimentedwith three different types of features. The first is extracted
neural features as described above (384 dimensions for T11 and 192
dimensions for T5). Individual neural features were z-scored per-channel
using a 3-min rolling window as implemented during online iBCI control
for T11. The same procedure is applied to T5 despite a bias correction
approach being applied during online control to offset means drifts. The
second is based on principal components analysis (PCA) of the extracted
neural features (after z-scoring). The recorded neural features were pro-
jected onto the PCA subspace defined by the top M principal components
(PCs) of a reference dataset that we call the PCA-reference data; see below.
The third is based on the output of the decoder (which can be viewed as a
type of neural feature), X̂. We also consider X̂lag , the previous time bin
(20ms earlier) of X̂.

Kullback–Leibler divergence (KLD)
TheMINDFUL score is based on comparing twodatasets of neural features,
defined in our case by the neural feature vectors from two collections of time
bins. We use the derived neural features as described above. The first col-
lection of time bins defines the reference data P1 and the second defines the
comparison data P2.Our choices for the reference and comparison timebins
are described below.Wefirst compute the samplemean (column) vectorsμ1
and μ2 of the neural feature vectors in the reference data P1 and comparison
data P2, respectively. These mean vectors are the same dimension k as the
derived neural features. We similarly compute the k × k sample covariance
matrices Σ1 and Σ2 in the two datasets. The MINDFUL score that we use is

dKLðP1jjP2Þ ¼
1
2

tr Σ�1
2 Σ1

� �þ μ2 � μ1
� �

Σ�1
2 μ2 � μ1
� �� k þ ln

detΣ2

detΣ1

� �� �

where tr(·) and det(·) denote the trace and determinant of a matrix,
respectively, and ln(·) is the natural logarithm. This formula is the
Kullback–Leibler divergence (KLD) between two k-dimensional multi-
variate Gaussian distributions with respective mean vectors μ1 and μ2 and
respective covariance matrices Σ1 and Σ2. Although it is motivated by a
multivariateGaussianmodel, its utility as a score for comparing twodatasets
does not rely on a Gaussian assumption. In developing MINDFUL, we
experimented with other measures of statistical difference based only on
means and covariances, such as the Jeffrey’s (symmetricKL),Bhattacharyya,
and Wasserstein distances between multivariate Gaussians, and found
qualitatively similar results. We selected KLD as the example for this paper
because it consistently gave the best results in many different scenarios, and
it is widely known.

KLD grouped by angle error
InFig. 1b, the reference and comparison are groupedby the angle error (AE)
of the time bin, regardless of movement intention and session day. The
reference data consists of all time bins for which the AE < 4°.We used these
same time bins for the PCA-reference data. The comparison data consists of
time bins forwhich theAE is in a particular 4° interval.We used 45 different
comparison datasets defined by the AE intervals [0,4°), [4°,8°), …,
[172°,176°), [176°,180°] giving 45 different KLD scores, calculated as
described above. These scores are plotted versus AE (using the middle of
each AE interval for the AE value) in Fig. 1b, and these 45 pairs define the
reported correlations for Fig. 1b. The derived neural features used are the
topM = 5 PCs.
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MINDFUL score to track model drift during closed-loop iBCI
control
MINDFUL quantifies the neural distribution shifts over time relative to a
historical reference distribution. We use KLD as described above and
experiment with different choices of derived neural features and reference
and comparison time bins. The reference time bins are restricted to the first
session when the decoder was first deployed for T11, and the first two
sessions forT5 (thefirst session is shorter than theothers; see supplementary
Fig. 6 for KLD using only the first session for reference). We additionally
restricted the reference time bins to those with AE < 4° in Figs. 1c, 2, 5b.We
varied thisAE threshold for inclusion in the referencedata in Fig. 5a. In all of
these figures the PCA-reference data is the same as the reference data. In
Figs. 1c, 2, 5a, the comparison data consists of all time bins in a 60-s interval.
In Fig. 5b,we varied the lengthof the comparisondata interval. In all of these
figures, the comparison data interval is shifted in increments of 1 s to
investigate how theMINDFUL score varies over time. In Fig. 1, the derived
neural features are the topM= 5 PCs. In Fig. 2a, the derived features are the
2-dimensional decoder output X̂. In Fig. 2b, the derived features are
4-dimensional and consist of X̂ and the 2-dimensional decoder output from
the previous time step X̂lag . In Figs. 2c and 5, the derived features are X̂, X̂lag ;
and the topM = 5 PCs, for a total of 9 dimensions. Supplementary table 1
shows results with additional choices of the derived features (no z-score,
M = 10, or no PCA).

MINDFUL robustness to reference data across tasks
In Fig. 6, we repeated the process of calculating MINDFUL as in Fig. 2c
except using different task data to estimate the reference distribution.
Additionally, no subsampling based on AEwas applied for the reference, as
the ground-truth performance is not available during personal use (no
targetwas cuedand therefore performancemetrics arenot readily available).
Approximately 16min of personal use and 10min of random-target tasks
were included for reference. The target distributions were still estimated
from a 60-s sliding window during the center-out-and-back task in sub-
sequent sessions. Thus,medianAEs calculated over time bins of these target
distributions remain the same as Fig. 2c in this analysis.

Cosine tuning
We fit cosine tuning curves to estimate the tuning properties per feature
per session. Cosine tuning has been used to describe the relationship
between the neuronal firing rate to movement directions, and it forms a
basis for using a linear decoder for neural decoding57. In a cosine model
y ¼ b0 þ b1 cos θþ b2 sin θ, y, the firing rate of a neuron, is regressed on θ,
the movement direction. b0, b1, b2 are regression coefficients that can be
estimated with least squares unbiased estimators. The model can also be

expressed equivalently as y ¼ b0 þ α cos θ� θ0
� �

, where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22

q

representing the modulation depth (MD) of the cosine curve. and θ0
representing the preferred direction (PD) where the largest firing rates are
recorded. It is noted that since features in this study were z-scored, the bias
term b0 is closed to zero, and is therefore omitted in the calculation of
modulation depth. Tuning parameters were estimated from 20ms-binned
features from the first second after the go-cue of non-outlier trials (offset by
160ms reaction time) to capture neural activity associated with reach
initiations. Feature tunings are considered significant if the F-test on the
regression model has a p-value < 0.05. See Supplementary Fig. 7 for the
estimated tuning and the empirical firing rate of example features.

Changes in MD and PD
For each feature on each day, change in MD was calculated by
ΔMD ¼ MD�MDref , and change in PD was calculated by
ΔPDj j ¼ min 360°� PD� PDref

�� ��; PD� PDref

�� ��� �
, where MDref and

PDref refer to the tuning of the first day for which the feature was sig-
nificantly tuned. The CircStat toolbox was used76. Only features that have
significant directional tuning for more than half of all sessions were con-
sidered in the tuning map described below. (For all features including the

non-significantly tuned, see Supplementary Fig. 8). Significance of tuning
change was assessed by bootstrapping samples of PD (or MD) to obtain a
distribution of ΔMD and ΔPD33,35. If the 95% confidence interval for the
difference distribution does not contain 0, thenwe reject the null hypothesis
at the 5% significance level35. To visualize the patterns of tuning changes, the
features were ordered by their tuning parameters using hierarchical clus-
tering on Matlab. Euclidean distance was used to estimate the similarity of
standardized ΔMD and ΔPD from all sessions between two features, and
ward linkage was applied to arrange the order of the clusters. The same
ordering was used in the heatmap of ΔMD and ΔPD for the same
participant.

Changes in tuning map
We quantified changes in directional tuning on a population level by
comparing tuning maps over recorded sessions. A tuning map on each
session is a 3 x Nmatrix comprising the fitted tuning curve parameters, b0,
b1, b2, ofN number of features with significant tuning on that day. Pairwise
Pearson correlations of maps were performed to assess the similarity of
tuning across sessions. In a pair of daily tuningmaps, only features thatwere
significant on both maps were considered to calculate the correlation. This
pairwise correlation was plotted in a heatmap which was interpolated to
account for the irregular number of days apart between sessions.

Mean KLD between sessions
To estimate the average neural distribution difference between pairs of
sessions, a mean KLD between distributions on two given sessions was
calculated (see Fig. 3e, j). The 9-dimensional derived neural features are the
same as Figs. 2c and 5, namely, the topM = 5 PCs, X̂, and X̂lag . The PCA-
reference data is the same as Figs. 1c, 2, and 5, namely, time bins from the
first session (T11) or the first two sessions (T5) that have AE < 4°. The
reference and comparison data are each 60-s intervals updated every 10 s. If
there areM such intervals in session i andN in session j, then themeanKLD
between the sessions is the averageKLDof all (M ×N) pairs of intervals from
sessions i and j. Outlier trials were excluded from the intervals. For visua-
lizing the complete pairwise comparison matrix containing the KLD of all
pairs of intervals from all sessions, see Supplementary Fig. 9.

Latent space dPCA projection
We applied demixed principal component analysis (dPCA)59 to population
neural activity from the initial decoder day for T11 and T5 respectively. For
subsequent trial days, we projected neural data onto the top two task-
relevant neural dimensions dPCA space of day 0. PCs were computed from
all features of the first second after the go-cue of non-outlier trials (offset by
160ms reaction time). Neural features were smoothed using a Gaussian
kernel with a standard deviation of 50ms. T5 random-target task trials were
discretized into eight movement directions in order to show comparable
results to T11’s center-out-and-back task with eight peripheral targets. We
further quantified the amount of task-related neural activity in each session
by comparing the variance accounted for (VAF) by the top two task-related
neural components from the first session. VAF was computed by

R2 ¼
�Y
�� ���� ��2 � �Y� FD�Y

�� ���� ��2
�Y
�� ���� ��2

Where �Y is the trial-average neural features across conditions on a sub-
sequent day, and encoder components F and decoder components D
are estimated from the first session.

Statistics and reproducibility
All statistical tests were reported using either Pearson’s or Spearman’s
correlation coefficients for correlation, or Wilcoxon rank sum for across
days comparison;p-values are reported alongwith thenameof the statistical
test.Anumber that follows the “±” sign is a standarddeviation. Blinding and
randomization were not relevant for this two-participant study.

https://doi.org/10.1038/s42003-024-06784-4 Article

Communications Biology |          (2024) 7:1363 11

www.nature.com/commsbio


Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data required to reproduce the findings in this study are publicly
available on Dryad (https://doi.org/10.5061/dryad.n2z34tn5s). The dataset
contains intracortical neural signals recorded from both participants along
with detailed information about the BCI behavior tasks and performance
metrics.

Code availability
The code for reproducing the figures is made available at https://github.
com/ewinapun/MINDFUL.
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