
Abstract— Intracortical brain-computer interfaces (iBCIs) 
enable high performance cursor control for people with 
tetraplegia by inferring motor intentions from neural recordings. 
However, current methods rely on frequent decoder recalibrations 
to reduce performance fluctuations attributable to instability in 
neural recordings. Towards clinical translation, iBCIs must 
sustain high performance over long periods of time with minimal 
interruptions to the user. Recent non-human primate (NHP) 
studies indicate that recurrent neural network (RNN) decoders 
are more robust to neural variability. Here, we demonstrate that 
an RNN variant, a long short-term memory (LSTM) neural 
decoder, provides online long-term, stable two-dimensional cursor 
control for a participant with tetraplegia enrolled in the 
BrainGate2 clinical trial. An LSTM decoder was trained with 
multiple days of the participant’s historical intracortical motor 
cortex recordings spanning seventy days. The LSTM decoder was 
then fixed and evaluated online as the participant used the iBCI to 
control a computer cursor during a center out and back task for 
15 sessions across four months. The LSTM demonstrated high 
performance for the first three months without recalibration or 
adaptive parameter updates with an average performance of 
93.8% of targets acquired. This longitudinal study suggests that a 
nonlinear RNN-based decoder can provide stable, intuitive control 
of 2-D kinematics by humans with tetraplegia.  
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I. INTRODUCTION 
Intracortical brain-computer interfaces (iBCIs) have enabled 

individuals with tetraplegia to control external devices by 
decoding movement intentions from neural activity. Recent 
human iBCI research has demonstrated rapid decoder 
calibration [1] and achieved high bitrates for communication [2], 
[3]. However, a major challenge hindering clinical translation of 
iBCI systems is the inability to reliably decode recorded neural 
activity across various recording instabilities. The information-
rich neural activity underlying consistent behaviors varies over 
time due to changes in recording conditions, individual’s 
physiological and cognitive states, and other possible factors. 
Performance declines when the decoder is unable to adapt or be 
robust against such within- and across-day instabilities [4], [5]. 
Nonlinear recurrent neural network (RNN) decoders can 
achieve higher performance iBCI cursor control relative to 
traditional linear filters for nonhuman primates (NHPs) [6]–[8]. 
An LSTM network is a variant RNN architecture with 
multiplicative gates to better account for long-term temporal 
dependencies [9]. In offline simulations with chronic human 
intracortical recordings, LSTM-based RNNs trained on multiple 
days of data outperformed a state-of-the-art Kalman Filter in 
decoding accuracy and speed [10]. Non-linear RNNs trained on 
additional historical data theoretically have a higher modeling 
capacity to infer consistent underlying neural population 
dynamics and should be more robust against recording 
instabilities. Here, we demonstrate that an LSTM decoder can 
provide stable, high performance online cursor kinematic 
control by a participant with tetraplegia for up to three months 
without the need for explicit recalibration or other parameter 
updates. 

II. METHODS 
The Institutional Review Boards of Mass General Brigham, 
Brown University, and VA Providence Healthcare System 
granted permission for this study. 

A. Participant 
Intracortical neural activity was recorded from participant 

T11, a 37-year-old male enrolled in the Braingate2 pilot clinical 
trial** (NCT00912041) who had two 96-channel 
microelectrode arrays (Blackrock Microsystems, Salt Lake 
City, UT) placed in the dominant (left) hand/arm knob area of 
the precentral gyrus [11]. T11 has tetraplegia due to spinal cord 
injury (C4 AIS-B) that occurred approximately 11 years prior 
to study enrollment. 
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B. Study Design 
This study examined 33 sessions, spanning 224 days, in 

which T11 completed a variety of iBCI closed-loop point-and-
select cursor tasks (a center-out-and-back task, a random target 
task, and a grid target task) in 2-5 minute blocks. T11 
consistently attempted thumb joystick imagery to continuously 
move the neural cursor and imagined discrete digit actions that 
were decoded by a linear discriminant classifier [5] into clicks. 
Neural data from task blocks in the first part of this study (trial 
days 576-646, red region of Fig. 1) were used to train an LSTM 
kinematic decoder that was then repeatedly assessed in a 
closed-loop 2D cursor target task in sessions spanning trial days 
658-800 (blue region of Fig. 1). 

C. Human Intracortical Neural Recordings 
Intracortical neural activity was acquired from 192 

microelectrodes via a wireless broadband iBCI interface [12] as 
T11 completed a variety of closed-loop 2D cursor tasks. Two 
neural features (multi-unit threshold-crossing spike rates and 
power in the 250–5000 Hz spike band) were extracted from 
each electrode in 20ms non-overlapping bins. Each feature was 
z-scored, initially using its mean and variance from the 
previously recorded block of data and then adaptively updated 
using the mean and variance from a 3-minute rolling average 
window. For closed-loop 2D cursor control, the 384 normalized 
neural features were decoded into movement velocities by a 
real-time LSTM decoder. 

D. LSTM Decoder 
The LSTM decoder in this study followed the same 

architecture as our previous study [10] with adjusted training 
hyperparameters (Table I). The input, z-scored neural features, 
were passed directly to the RNN layer whose outputs went to 
three densely connected activation functions, decoding the x- 
and y-velocity and the normalized velocity. 

The data used to train the decoder came from T11’s 18 most 
recent 2D cursor sessions preceding the first assessment 
session. The training data spanned 70 days (trial days 576 to 
646, Fig. 1) and contained 331 minutes across 8,441 acquisition 
trials. 

Individual trials with a median angle error (angle between the 
instantaneous cursor direction and the center of the target) 
greater than 50° were excluded from the training dataset. The 
labels (instantaneous cursor-to-target vectors) were normalized 
by their per-block 99th percentile to prevent outliers from 
compressing the label ranges while maintaining a magnitude 
range of roughly ±1.  

For the entire LSTM training procedure, the data were 
randomly split by trials into training (70%) and validation 
(30%) datasets. LSTM training used the Adam optimizer and 
the Keras library (TensorFlow backend). The LSTM 
coefficients were updated using the training dataset (one 
epoch). After each epoch, the mean squared error (MSE) was 
assessed on the held-out validation data. LSTM training iterated 
until the held-out error did not improve.  

E.  Assessment Task 
To assess longitudinal performance of the decoder for BCI 

kinematic control, T11 performed a closed-loop 2D point-and-
select center-out-and-back assessment task using the same 
decoder for 15 sessions spanning 142 calendar days (trial days 
658 to 800, Fig. 1). In each trial, T11 attempted thumb joystick 
imagery to continuously move the neural cursor from the center 
target to one of the eight pseudo-randomly selected peripheral 
targets. After the cursor reached a target, T11 attempted a right 
index finger down action to generate a “click” decoded by a 
linear discriminant analysis classifier calibrated at the 
beginning of each session. A trial was successful when the 
cursor contacted the cued target and a click action was decoded. 
Otherwise, a trial was unsuccessful after a 10-second timeout. 
Each assessment session collected two 5-min blocks except day 
93 where only one 5-min block was collected. A total of 1840 
assessment trials were collected during 145 minutes of 
cumulative task time. Neural recordings, cursor-to-target 
vectors and decoder outputs were logged. 

 
Fig. 1. Number of blocks in sessions and data duration for training and assessing the fixed LSTM. For each block on each trial day in the LSTM training data 
set (red region, gray bars), the participant completed one of several closed-loop point-and-select cursor tasks. Each block in the assessment phase (blue region) 
used the fixed LSTM on the same center-out-and-back cursor task. Each assessment block is colored based on the median angle error of the block. 

 
TABLE I.  LSTM TRAINING HYPERPARAMETERS 

Hidden 
units 

Batch 
size 

Learning 
rate 

Unrolled 
steps 

# Features Drop 
out 

Loss 

100 1024 0.0005 25 384 50% M.S.E. 
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F. Outlier Events 
Changes in the acquired neural data can degrade the 

performance of a static BCI decoder. Such perturbations may 
result from slow drifts in neuronal tuning or changes in task 
context, but also from rapid within trial-changes due to noise or 
dropped wireless neural data packets. To examine the potential 
influence of acute perturbations on task performance, we 
identified outlier trials as those having more than 5% loss of 
wireless neural data packets or large neural responses greater 
than 8 standard deviations from the mean [12]. Across the 15 
sessions, 34 of the 1840 trials were labeled as outlier trials. 

G. Performance Metrics 
The overall task performance on each day was quantified by 

the percent of successful trials in the assessment task. Cursor 
control was further assessed using the following performance 
metrics [13]: angle error (AE), defined as the angle between the 
cursor-to-target vector and the directional vector estimated by 
the decoder (best = 0°; max = 180°); time to target, which is the 
time it takes to acquire the target before timeout; path 
efficiency, which is the ratio of the actual trajectory length to 
the ideal straight-line path to the target (best = 1); and the 
number of orthogonal direction changes (ODC) where the 
cursor reversed away from or toward the target (best = 0), which 
quantifies the path consistency towards the target. These 
performance metrics were computed for each trial on all LSTM 
performance assessment days. 

To quantify how the LSTM’s performance over days related 
to changes in the underlying neural activity, we first applied 
demixed principal component analysis (dPCA) [14] to the 
population neural activity from the initial LSTM assessment 
session to find the top two task-relevant neural dimensions. 
Then, for each assessment day, we projected the neural data 
from the initial second of each trial (excluding outlier trials) 
onto these day 0 neural components and visualized the resulting 
average trajectories. We further quantified the amount of task-
related neural activity in each assessment session by comparing 
the variance accounted for (VAF) by these initial task-related 
neural components.  

III. RESULTS 

Over the course of 142 days, we assessed a fixed LSTM 
decoder’s ability to enable control of an iBCI cursor without 

recalibration. Cursor trajectories in the closed-loop center-out 
task each day reflected the quality of control provided by the 
fixed LSTM decoder over more than 4.5 months of assessment 
(Fig. 2). The LSTM decoder achieved accurate online cursor 
control in all but one session during the first three months. The 
decoder achieved an average of 93.8% success in the first 11 
sessions (93 decoder days). However, there were signs of 
decreasing performance on decoder day 69. We found 
consistently poor performance from day 100 to 142 (average of 
33.1% targets acquired). Interestingly, as the LSTM 
performance worsened, its errors were directionally biased 
consistently to the upper right direction (Fig. 2, decoder day 100-
142) as opposed to displaying errors in all directions.  

The computed cursor performance metrics over time (Fig. 3) 
were consistent with the observed cursor trajectories. These  
performance metrics revealed significant changes between 
early and later assessment sessions, including angle error 
(early: 26.8° ± 22.6°; later: 88.4° ± 46.1°; p < 0.001; Wilcoxon 
rank sum), time to target (early: 4.02 ± 1.98 seconds; later: 8.01 

 
Fig. 3. (a) Average trial success rate per session, (b) trial-to-trial 
performance (angle error, time to target, path efficiency and orthogonal 
directional change).  Each dot represents either a successful (blue) or 
unsuccessful (red) trial. Outlier trials have a yellow outline. 

 
Fig. 2. Cursor trajectories of the first 5-min block for each trial day. Colors correspond to different target locations. A solid line indicates the cursor trajectory 
of a trial going from center to a peripheral target, and a dotted line indicates cursor trajectory of a trial of return to the center. 
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± 3.04 seconds; p < 0.001), path efficiency (early: 0.79 ± 0.12; 
later: 0.38 ± 0.17; p < 0.001; excluding unsuccessful trials) and 
orthogonal directional change (early: 1.82 ± 2.82; later: 7.40 ± 
5.35; p < 0.001). 

How does the LSTM’s performance over days compared to 
linear estimates of change in the neural data? We examined the 
top two task-relevant dPCs computed from the neural data in 
the first assessment session to compare changes in task-relevant 
neural activity across sessions. We visualized this change over 
days by projecting the neural data from the beginning of each 
trial to observe the average neural trajectory per target direction 
for each session (Fig. 4). We found that the average trajectories 
became less distinct as the session dates progressed, reflecting 
changes in the underlying population activity over time 
consistent with the decline in task performance. We then 
computed the VAF from the top two task-relevant neural dPCs 
for each session. We found that VAF was initially 50% on 
decoder day 0 and remained above 20% on days in which clear 
target trajectories were observed. As the task performance 
declined, the VAF decreased, ending with a value of 4.2% on 
decoder day 142. We found a negative correlation between the 
neural VAF and the average angle error per session (-0.88, 
Pearson correlation; similar correlation found when using the 
top two principal components, -0.92). 

IV. DISCUSSION & CONCLUSION 

 An LSTM decoder trained on previously collected human 
intracortical recordings offered stable and accurate 2D closed-
loop iBCI cursor control for a person with tetraplegia for up to 
three months. The stable long-term performance reported may 
be attributed to the nonlinear recurrent LSTM decoder. Previous 
work has shown that a nonlinear, recurrent neural network 
decoder can enable robust 2D cursor decoding in NHPs over 
several days [8]. Furthermore, stable low dimensional neural 
manifolds have been demonstrated to persist for hundreds of 
days [15]. Training the LSTM on a large number of historical 
sessions may implicitly regularize its coefficients toward a 
stable, low dimensional manifold, enabling better across-session 
neural-to-kinematic mappings despite neural and task 
variability. In other words, it avoids overfitting to a given day of 
data, unlike traditional daily recalibrated decoders, thereby 
becoming more robust to across-day instabilities. Including 
various types of 2D closed-loop cursor tasks in the training data 
also encompasses a wider range of cursor control behavior, 

which allows the LSTM to adapt to different control contexts. 
We previously reported that peak offline LSTM performance 
can  be achieved by training with human neural data spanning 
73 days on average [10], which is consistent with the training 
data set we used for the LSTM in this study. 

We assessed a fixed LSTM over 15 sessions across 142 days 
and found robust high performance decoding up to 93 days after 
the initial assessment. However, the LSTM had low 
performance that did not improve 100 days and beyond. 
Comparing angle error with the VAF of the top two task-
relevant dPCs revealed a strong negative correlation between 
LSTM performance and variance explained. This suggests that 
the neural subspace maintained a strong task relationship over 
the first 93 days of LSTM use (except day 69). Future work will 
investigate if this relationship holds true for linear decoders. 

The decline of performance during decoder day 69 followed 
by a recovery of performance on decoder day 93 suggests that, 
although there may be a period of several days in which the 
decoder’s performance is variable, the task-relevant neural 
subspace was recoverable. Follow-up studies will sample 
performance more often to better understand the transition 
between high performance and lower performance decoding, 
perhaps providing additional insight into the nature of the 
underlying nonstationarity.  

Our findings validate the use of a nonlinear LSTM decoder 
as a strategy towards long-term BCI decoding with a greatly 
reduced need for recalibration. Large volumes of previously 
collected data can be useful for training decoders that can 
accommodate neural variability. It is likely that other pre-
processing steps such as nonlinear data alignment may help the 
LSTM decoder to better generalize and adapt to larger nonlinear 
shifts in neural representation. 
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