
•  Evaluate nonstationarity by measuring the change between distributions
•  Estimate reference multivariate Gaussian distribution from data when decoder was �rst tested on day 0
    and subsequent time segments from other days and calculate KL divergence between them
•  Calculate correlation coe�cients with online performance across all session days

METHODS: DATA PROCESSING AND METRIC
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A long enough window length is required 
to obtain better estimation of neural data;
30 second + is su�cient to track online AE 

Selecting only time steps with low angular 
error from the �rst session as reference data
further improves correlation 

Subselect data for reference 
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• Intracortical brain-computer interfaces (iBCIs) have enabled individuals with tetraplegia to 
control external devices via decoding movement intentions from neural recordings. 

• However, neural activity underlying consistent motor intentions varies over time due to 
changes in recording conditions, individuals’ cognitive states, etc. 

• Within- and across-day nonstationarity in the relationship between recorded neural activity 
and intended movements can lead to a drop in performance if the decoder is �xed or not 
robust against such changes (Perge et al, 2013). 

• To translate iBCIs for practical everyday use, we propose an approach to track 
nonstationarity, when a participant with tetraplegia controls a computer cursor through an 
iBCI with a �xed decoder.

• A distance metric is used to monitor the changes in the distribution of neural ensemble 
activities and decoder outputs, without the knowledge of target location or performance

Blackrock Microsystem Inc. array

Participant (enrolled in BrainGate2 pilot clinical trial, IDE*) 
• T11: 37 year-old male with tetraplegia due to C4 AIS-B spinal cord injury 
• Two 96-channel microelectrode arrays implanted both on left precentral gyrus (PCG)

• KL divergence of neural data relative to epochs of good performance is an e�ective metric 
to track nonstationarity over a long period without requiring labels of the target location

• Towards online application, it might be useful for triggering either a user-engaged or 
background update as the decoder begins to degrade

• Future work includes 

- validating this approach with other datasets to evaluate how well it generalizes to other 
participants and other tasks

- online implementation for tracking nonstationarity during kinematic control with an iBCI
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Radial-8 task on a computer monitor, 
T11 is controlling the cursor (in white) 
from center to outer target (in red)
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Fixed RNN decoder provides long-term high performance
• 93.8% mean success rate in the �rst 3 months without any parameter updates, but subsequently degraded 

to 33.1% in later sessions

 

Data Acquisition
• Intracortical neural recordings via a wireless broadband iBCI  
   (Simeral et al, 2021)
• Extracted threshold crossing events and power in the spike  
  band (250 - 5kHz)
• 5 -10 mins closed-loop cursor control of a radial-8 task per  
  session
• Collected 1832 trials over 15 sessions spanning across 142 days

Fixed RNN Decoder for decoding kinematics
• LSTM is a variant architecture of recurrent neural network (RNN) with gated input features
• Outperforms linear Kalman �lter-based decoder in o�ine analysis (Hosman et al, 2019)
• Train and validate using point-and-select data from 20 most recent sessions prior to the �rst session 
in this study (8441 trials spanned across 70 days - trial day 576 to 646)
• Only trials with a median angular error less than 45° were included for training
• 30% of trials were reserved for validation

TABLE I.  LSTM TRAINING HYPERPARAMETERS  

Hidden 
units 

Batch 
size 

Learning 
rate 

Unrolled 
steps 

# 
Features 

Drop 
out 

Loss 

100 1024 5E-4 25 384 50% Mean 
sq. err 
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An example of instantaneous angular error 
(AE) during a trial; (best: 0°, worst: 180°)

Performance depends on similarity in 
neural feature ensembles  
• Decoder is expected to perform well when neural patterns  
  in testing are similar to neural patterns used for training
• When sorting neural data (ND) time series by angular error (AE)
  • When AE are in similar ranges, ND are more similar 
  • When AE are in di�erent ranges, ND are more dissimilar
• Distance metric between ND distributions re�ects ND similarity,  
  which should also re�ect similarity in decoder performance

• Estimated distribution is updated every 0.2 second over a 60-second sliding window, no smoothing is applied

•     - Pearson’s correlation coe�cient (assess linear relationship)   

•     - Spearman’s rank correlation coe�cient (assess monotonic relationship) 
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ONLINE PERFORMANCE

Tracking Nonstationarity in Multi-Day Intracortical Neural Recordings During iBCI Use By a 
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