
Adaptive Subspace Identification
Algorithm for Dynamic Tracking

Tsam Kiu Pun

An Undergraduate thesis
Presented to the Faculty

of University of Southern California

Department of
Electrical Engineering

Advisor: Professor Maryam Shanechi

May 2018

c© Copyright by Tsam Kiu Pun, 2018.
All rights reserved.

Abstract

In this work, we implement an adaptive subspace identification algorithm developed
by[1] and test it on simulated time-invariant and time-varying state-space models.
We run some simulations to prove that the algorithm can track the poles trajectories
of the time-varying State-space models in an adaptive manner with high accuracy.
By quantifying the performance with prediction error and tracking error, we experi-
mentally show that the proposed adaptive identification algorithm could better pre-
dict and track poles of the true time-varying system, as compared to the traditional
non-adaptive identification algorithm. In addition, we investigate the effect of the
forgetting factor and training set length to empirically find their best values in our
simulations.

iii

Acknowledgements

I would like to thank my advisor, Dr. Shanechi, and my research collaborator, Yuxiao
Yang for their guidance towards my research. I would like to thank the Electrical
Engineering department for providing me the opportunity to complete my undergrad-
uate thesis. Lastly, I would like to thank my parents and my sister, Jessica, for their
relentless support throughout my undergraduate study.

The authors acknowledge support of the Army Research Office (ARO) under con-
tract W911NF-16-1-0368. This is part of the collaboration between US DOD, UK
MOD and UK Engineering and Physical Research Council (EPSRC) under the Mul-
tidisciplinary University Research Initiative (MURI).

iv

Contents

Abstract . iii
Acknowledgements . iv
List of Figures . vi

1 Introduction 1

2 Methods 3
2.1 Problem formulation . 3
2.2 Adaptive subspace identification algorithm 4
2.3 Experiment set-up . 5

2.3.1 Training and testing of state-space model 6
2.3.2 Experiment procedures . 6
2.3.3 Performance measures . 7

3 Simulation Results 9
3.1 Time-invariant and time-varying systems 9

3.1.1 Case 1: Time-invariant system 9
3.1.2 Case 2: Time-varying system - random walk 10
3.1.3 Case 3: Time-varying system - linearly ascending 12
3.1.4 Case 4: Time-varying system - step function 13
3.1.5 Case 5: Time-varying system - linearly ascending with step

function . 14
3.1.6 Simulations summary . 14

3.2 Effects of training and testing set length 15
3.3 Effects of the forgetting factor . 16

4 Conclusion 19
4.1 Future work . 19

Bibliography 20

v

List of Figures

2.1 Waveforms of poles of system matrix A: (a) a time-invariant system,
(b-e) time-varying system with random walk, ascending linearly, chang-
ing abruptly with a step function, and ascending linearly with a step
function, respectively. 7

3.1 Performance on time-invariant system 10
3.2 Performance on random walk time-varying system 11
3.3 Performance on linearly ascending time-varying system 12
3.4 Performance on time-varying system with step up function 13
3.5 Performance on linearly ascending time-varying system with step func-

tion . 14
3.6 Prediction error (PE) of the estimated outputs in testing set. 15
3.7 Prediction error (PE) associated with different β values 16
3.8 Tracking error (TE) associated with different β values 17
3.9 Poles trajectories of (a) random walk, (b) step function (c) linearly

ascending with different β values . 18

vi

Chapter 1

Introduction

Through identifying and tracking of brain network dynamics, neuroscientists have
been able to understand neural mechanisms in a deeper level for the past decades. A
broad range of neurological disorders can be effectively treated by developing adaptive
closed-loop stimulation therapies or brain-machine-interface (BMI). They utilize real-
time neural signal monitoring and brain states control using electrical stimulation.
However, due to the non-stationary and time-variant properties of some brain network
dynamics, such modeling becomes challenging.

Various subspace identification methods for linear, time-invariant systems have
been developed over the past decades, as summarized by [2]. Specifically applied
to neurological disorder problems, an identification framework that estimates time-
invariant linear state-space models (SSMs) has been presented [3]. It describes spon-
taneous neural population dynamics and input-output neural dynamics in response to
electrical stimulation. It successfully predicts electrocorticogram (ECoG) dynamics
that’s applicable to certain closed-loop stimulation therapies. However, most closed-
loop brain stimulation systems operate over a long period of time. To maintain the
prediction power over time, a time-variant SSM is needed.

There are recent literatures that demonstrates adaptive subspace identification
method can significantly predict spike-based closed-loop motor BMIs and can assist
closed-loop anesthetic delivery [4] [5]. The group has developed an adaptive subspace
identification algorithm to estimate time-variant SSMs that track non-stationary
brain network dynamics online [1].

This work is an extension on [1] by conducting simulation experiments to val-
idate the performance of the adaptive algorithm. We first illustrate the adaptive
subspace identification algorithm where a forgetting factor and an update recursion
are introduced to enable online implementation of the algorithm [1]. We present the
performance the algorithm on five different SSMs. Our simulation results shows that
the proposed adaptive identification algorithm can successfully track the time-varying

1

system dynamics, as well as predicting the future outputs. To obtain the best results
of the modified algorithm, we empirically evaluate and suggest the optimal value of
the forgetting factor and training set length, as well as looking into how far can the
algorithm still do reasonable prediction with a fixed model

2

Chapter 2

Methods

2.1 Problem formulation

Time-invariant SSMs of purely stochastic systems can be expressed as{
xt+1 = Axt + wt

yt = Cxt + vt,
(2.1)

where xt ∈ Rn is the hidden states, n is the system order, A ∈ Rn×n, C ∈ Rl×n

are system matrices, wt and vt are white noises with zero mean and covariance
E
[(wi

vj

)
(wT

i vTj)
]

=
[
Q S

ST R

]
δij. Q ∈ Rn×n, R ∈ Rl×l and S ∈ Rn×l are covariance

matrices.

This SSM is equivalent to the forward innovation model[2],{
xt+1 = Axt +Ket

yt = Cxt + et
(2.2)

where E[eie
T
j] = CPCT +R, K is the forward Kalman gain:

K = (APCT + S)(CPCT +R)−1, (2.3)

and P is the forward state covariance matrix determined by the forward Riccati
equation.

P = APAT +Q− (APCT + S)(CPCT +R)−1(APCT + S)T . (2.4)

3

Time-varying SSMs of purely stochastic systems have time-varying matrices
A,C,Q,R,S: {

xt+1 = Atxt +Ket

yt = Ctxt + et
(2.5)

2.2 Adaptive subspace identification algorithm

The adaptive algorithm we propose is built on top of the traditional subspace identifi-
cation algorithm described in[2]. The main ideas are computing the output covariance
matrices

Λτ = E[yt+τy
'
t] ∝

t∑
k=1

yk+τy
'
k, (2.6)

where t is the total number of time steps, and estimating A,C,Q,R,S from (2.6)
using linear algebra techniques such as singular-value-decomposition. In particu-
lar, these system matrices are computed in an efficient and robust way using QR-
decomposition.

To make the subspace identification algorithm adaptive, we introduce a user-
defined forgetting factor, β, to estimate time-varying output covariance matrices[1],

Λτ (t) = E[yt+τy
'
t] ∝

t∑
k=1

βt−kyk+τy
'
k, 0 ≤ β ≤ 1, (2.7)

where t is the current time step. Here, we update the estimate of output covariance
matrices at each time step, while putting more weight on the recent data than past
data. A small β implies the recent data are more heavily weighted, and a large β
implies the past data are weighted almost as heavy as the recent data. β = 1 means
that the entire dataset is weighted equally, which is equivalent to (2.6).

Since we calculate new output covariance matrices at every time step, the QR-
decomposition also needs to be recalculated at every time step. To enable online
operation of the QR-decomposition, we use a recursive algorithm to update the R
matrix in the QR-decompositions[1].

4

Traditional subspace method represents the data matrix and takes the QR-
decomposition with

Y
(i)
t =


y0 y1 ... yt−1
y1 y2 ... yt

... ...
.

yi−1 yi ... yi+t−2

 = [Rt 0] Qt. (2.8)

We represent the data matrix at the next time step as

Y
(i)
t+1 = [Y

(i)
t yt+1] = [Rt+1 0] Qt+1 , (2.9)

where yt+1 = [yTt+1 y
T
t+2 , . . . , y

T
t+i−1]

T is the new data vector, Rt+1, Qt+1 are the R
and Q matrix of the next time step respectively.

We use Givens rotation to update the QR-decomposition [6]. This algorithm
updates the R matrix only when new data is added. Required memory and compu-
tational load are independent of t. We perform the recursion as follows.

[Rt+1 0] = [Rt 0 yt+1]Grotation (2.10)

Rt+1 = Rt G
(1)
rotation + yt+1G

(2)
rotation , (2.11)

G
(1)
rotation and G

(2)
rotation are the Givens rotation matrices.

We incorporate the forgetting factor by modifying (2.9) to

Y
(i)
t+1 = [

√
β Y

(i)
t yt+1] = [Rt+1 0] Qt+1, (2.12)

and (2.11) to

Rt+1 =
√
β Rt G

(1)
rotation + yt+1G

(2)
rotation (2.13)

The new R matrix will be used to produce an updated SSM estimation recursively.

2.3 Experiment set-up

To optimize the results of the algorithm, various hyperparameters should be deter-
mined. We will explore the influence of the forgetting factor, β, as well as the optimal
length of training and testing sets, though several other parameters can also affect
the performance, which will be left for future work. In addition, we will also applied
the algorithm on different TI or TV state systems. In this section, we will explain the

5

training and testing of the algorithms, illustrate the experimental procedures we used
in all experiments, and propose two error metrics to quantify the estimation power
and pole tracking ability when applied to different systems.

2.3.1 Training and testing of state-space model

Let us first define some notations to describe the model. N is the total number of of
time steps in each simulation. Ttrain stands for the number of time steps allocated in
the training set, while Ttest is the number of time steps allocated in the test set. So
output yt, t = 0, ..., N-1, is divided into training and testing sets.

The same training set is used to estimate the SSM by both adaptive and non-
adaptive identification. We denoted the estimated SSM by SSMadpt and SSMnon-adpt.
The adaptive algorithm estimates the SSM at each time step, from t = 1 to Ttrain.
During training, we record the estimated poles of the time varying system at each
time step to investigate the pole tracking ability of the algorithm. We fix SSMadpt at
the last estimate at t = Ttrain. The non-adaptive algorithm uses the entire training
data to produce a single estimation, SSMnon-adpt. Using SSMadpt and SSMnon-adpt, we
evaluate the prediction power on the testing set, which is unseen by both algorithms.
We do not further adapt the SSMadpt during testing. We compare these prediction
to the baseline, which is defined as the true SSM at t = Ttrain.

2.3.2 Experiment procedures

We will analyze the performance of the algorithm on five different practical situations:
a time-invariant system, and four time-varying systems with the poles of system
matrix A changing in random walk patterns, ascending linearly, changing abruptly
with a step function and ascending linearly with a step function. They are illustrated
in figure 2.1.

In each experiment, the true system is generated by the same procedure as follows:

• The system is set as a second-order system with zero inputs and two outputs.

• A is the only time-varying matrix with changing poles in each time steps, while
other parameters are time-invariant.

• The initial state-space matrix A is set under the constraint that the absolute
values of all poles of A are less than 1 (stability requirement). The C matrix
is set to an identity matrix.

• The noise et is a zero mean Gaussian noise of variance 0.0001.

6

Figure 2.1: Waveforms of poles of system matrix A: (a) a time-invariant system, (b-e)
time-varying system with random walk, ascending linearly, changing abruptly with a
step function, and ascending linearly with a step function, respectively.

• Unless specified otherwise, the forgetting factor, β is set to 0.99; the total
time steps, N , equals to 5500, where the first 5000 and the remaining 500 are
allocated for the training and testing set, respectively.

• A Monte Carlo simulation of size 200 is performed to obtain an averaged result.
The waveforms of state matrix A remain the same in all simulations, even in
the random walk case.

2.3.3 Performance measures

We introduce two error metrics to evaluate the algorithm’s performance. We quantify
1) a prediction error(PE) between the predicted outputs and the true outputs in the
test set, and 2) a tracking error(TE) between the estimated and the true eigenvalues
of the TV matrix at each time step.

We quantify the prediction power of SSMadpt and SSMnon-adpt by calculating the
one-step-ahead prediction error on the test sets. Lower the PE, higher the prediction
power, better it can predict into the future. We denote Â, Ĉ, K̂ as the estimated
parameters of A, C, K in a SSM, respectively. The one-step-ahead prediction of
ŷt+1—t at time t+ 1 given the observations at time 1 to t can be calculated with the
estimated parameter using Kalman predictor [7]

7

{
x̂t+1|t = Âx̂t|t−1 + K̂(yt − Ĉx̂t+1|t)

ŷt+1|t = Ĉx̂t+1|t,
(2.14)

where we initialize x̂0|−1 = 0.

We define PE using a normalized root mean square error,

PE =
1

ny

ny∑
i=1

√√√√∑Ttest
t=1 (ŷ

(i)
t|t−1 − y

(i)
t)2∑Ttest

t=1 (y
(i)
t)2

× 100%, (2.15)

where ny is the number of output, ŷ
(i)
t|t−1 is the ith estimated output calculated using

2.14, i = 1, ..., ny. We can take the mean and standard error of the mean (SEM)
of PE across all Monte Carlo simulations, and denote that as PEadpt, PEnon-adpt

and PEbaseline for the adaptive algorithm, non-adaptive algorithm and the baseline,
respectively.

We evaluate the pole tracking ability with a tracking error (TE). Lower the TE,
better the estimator can track the poles of the system matrix. TE is defined in a
similar fashion as the prediction error. However, TE is performed on the averaged
pole trajectories over all Monte Carlo simulations, instead of on individual simulations
with estimated poles that have very large variance to the true poles.

TE(i) =

√√√√∑Ttrain
t=1 (eig(Â)

(i)
t|t−1 − eig(A)

(i)
t)2∑Ttrain

t=1 (eig(A)
(i)
t)2

× 100%, (2.16)

where n is the order of matrix A, eig(A)
(i)
t denotes the ith true pole of A at time

t, and eig(Â)
(i)
t|t−1 denotes the averaged ith estimated pole of A at time t given the

observations at time 1 to t−1, i = 1, 2, ..., n. We can take the mean and standard error
of the mean (SEM) of TE across all n poles, and denote that as TEadpt, TEnon-adpt

and for the adaptive algorithm and the non-adaptive algorithm, respectively. Note
that TEbaseline, TE for the baseline, does not exist.

8

Chapter 3

Simulation Results

In this chapter, we present the performance of the adaptive algorithm on various time-
invariant and time-varying state systems, in comparison to that of the non-adaptive
algorithm. We will also explore the effects of the forgetting factor, Ttrain and Ttest on
the performance of the algorithm. We determine empirically the best value of β and
Ttrain.

3.1 Time-invariant and time-varying systems

For each case, we visually evaluate the pole tracking ability of the adaptive algorithm
and compare the output estimation in the test set. We also quantitatively compare
PE and TE of both algorithms and measure the p-value from Wilcoxon signed rank
test [8] between the algorithms.

3.1.1 Case 1: Time-invariant system

In the first case, all state matrices are time-invariant. Matrix A is set to be

A =

[
0.6 0
0 0.8

]
.

Since this is a time-invariant system, we set β = 1 to show that the adaptive
algorithm can perform equally well when all past data are used.

The estimated poles trajectories averaged over the 200 Monte Carlo simulations
is displayed on figure 3.1a. The pole estimation using the non-adaptive algorithm
can perfectly track the true time-invariant poles with minimum error(TEnon-adpt =

9

(a) Poles trajectories (b) Estimated outputs in test set

Figure 3.1: Performance on time-invariant system

0.079±0.062%), and the estimated poles using adaptive algorithm also converge
quickly to the true poles with a small error (TEadpt = 1.01±0.33%). Figure 3.1b
shows the estimated outputs and the true outputs of the first 100 time steps in the
test dataset of a single simulations. Both algorithms has very similar estimation
performance(PEnon-adpt = 30.19±0.05% and PEadpt = 30.18±0.05%, p < 0.005), but
are both higher than the baseline (PEbaseline = 25.81±0.02%).

It is as expected that the non-adaptive algorithm can accurately estimate the true
poles in time-invariant systems, but this experiment demonstrates that the adaptive
algorithm can also perform as well in time-invariant system. The slightly higher
tracking error of poles using adaptive algorithm is due to the pole fluctuations at the
beginning of time steps. Since at the beginning of the training, only a small set of
data are taken into account, whereas all 5000 data are considered all at one in the
non-adaptive algorithm. However, the estimation of poles converges very quickly and
the adaptive algorithm tracks as well as the non-adaptive algorithm towards the end.

3.1.2 Case 2: Time-varying system - random walk

To better investigate the tracking performance of the adaptive algorithm on time-
varying system, we consider another experimental framework. The state matrix A is
generated from a slowly ascending random walk that passes through a low-pass filter
to smooth out the trajectories. The random walk is produced with initial poles set

10

to 0.6 and 0.8, and end poles set to 0.79 and 0.99, calculated as follows,

A =

0.6 + 0.19 t
N−1 +

t−1∑
i=0

e(i) 0

0 0.8 + 0.19 t
N−1 +

t−1∑
i=0

e(i)


e(t) denote a zero mean Gaussian process with covariance of 0.0052 , with N being
the total number of time steps, t = 0, . . . , N − 1. Random walk with any pole
greater than 1 is regenerated to fulfill the stability requirement. Note that each pole
trajectory of the A matrix has different random walk patterns.

(a) Poles trajectories (b) Estimated outputs in test set

Figure 3.2: Performance on random walk time-varying system

From figure 3.2a, we can immediately point out that the non-adaptive algorithm
fails to track the poles trajectories over time. Even the non-adaptive algorithm uses all
past data, since only one estimated system is produced, it is impossible to track poles
in an adaptive manner. On the other hand, the adaptive algorithm can effectively
track the true poles of the time-varying system with a TEadpt of 3.76±0.14%, signifi-
cantly outperforms the non-adaptive algorithm that has a TEnon-adpt of 10.85±5.03%.
In figure 3.2b, the estimated outputs of the test set using the adaptive algorithm
are also closer to the true outputs compared to the non-adaptive algorithm. While
PEadpt(20.50±0.21%) is smaller than PEnon-adpt(28.26±0.05%, p < 0.0005), they are
both higher than PEbaseline(13.47±0.01%). Thus the adaptive algorithm has a higher
tracking power and estimation power in the random walk case.

11

3.1.3 Case 3: Time-varying system - linearly ascending

We consider another framework with linearly ascending poles trajectories of equal
slopes. The state matrix is as follows:

A =

[
0.6 + 0.19 t

N−1 0

0 0.8 + 0.19 t
N−1

]

(a) Poles trajectories (b) Estimated outputs in test set

Figure 3.3: Performance on linearly ascending time-varying system

Similar to case 2, we can immediately point out that the non-adaptive algorithm
fails to track the poles trajectories over time from figure 3.3a. Meanwhile, the adaptive
algorithm can effectively track the true poles of the time-varying system with a very
small TEadpt of 1.96±0.13%, which again significantly outperforms the non-adaptive
algorithm that has a TEnon-adpt of 6.96±0.70%. In figure 3.3b, the estimations using
the adaptive algorithm are closer to the true values compared to that of the non-
adaptive algorithm. PEadpt(15.85±0.19%) is smaller than PEnon-adpt(19.77±0.05%, p
< 0.0005), and they are both greater than PEbaseline (11.10±0.001%). So the adaptive
algorithm has a higher tracking power and estimation power also in the linearly
ascending case.

Due to the smooth, linearly-increasing trajectories, the poles behavior is more pre-
dictable that in the random walk case in the test set. This predictability contributes
to a lower prediction error and tracking error in this case than in the random walk
case.

12

3.1.4 Case 4: Time-varying system - step function

While the poles are changing gradually through time in the previous two cases, we
look into the adaptive algorithm performance when the poles are abruptly changed,
in particular, the response to a step function. The state matrix with a step function
is set up as follows:

A =

[
0.6 + 0.19 u(t− Ttrain

2
) 0

0 0.8 + 0.19 u(t− Ttrain
2

)

]
,

where u(t) indicates the unit step function. u(t) = 1 if t ≥ 0, and 0 if t ≤ 0.
Alternatively, we can express with in two matrices

A =



[
0.6 0
0 0.8

]
, for 0 ≤ t ≤ Ttrain/2

[
0.79 0

0 0.99

]
, for Ttrain/2 ≤ t ≤ N

(a) Poles trajectories (b) Estimated outputs in test set

Figure 3.4: Performance on time-varying system with step up function

Figure 3.4a demonstrates the convergence to the new poles in about 400 time
steps using the adaptive algorithm. It can track the poles accurately at other time-
invariant periods better than the non-adaptive algorithm that only estimates a single
system. TEadpt is 2.68±0.75%, which is better than TEnon-adpt (14.48±0.35%). We
see an increase in estimation power when predicting the outputs in the test set as
shown in figure 3.4b in the step function case. PEadpt is 13.36±0.17%, which is lower
than PEnon-adpt(15.23±0.04%, p < 0.0005). Both are above PEbaseline = 9.59±0.001%.

13

3.1.5 Case 5: Time-varying system - linearly ascending with
step function

This case is a combination of case 3 and 4. The linearly ascending component causes
no time-invariant period in the system and the step function component causes the
trajectories not evolving smoothly at all time. The state matrix is described as
followed:

A =

[
0.6 + 0.19[t

N−1 − u(t− Ttrain
2

)] 0

0 0.8 + 0.19[t
N−1 − u(t− Ttrain

2
)]

]

(a) Poles trajectories (b) Estimated outputs in test set

Figure 3.5: Performance on linearly ascending time-varying system with step function

Similar to case 4, Figure 3.5a demonstrates the convergence to the new poles
at Ttrain/2 can be achieved in about 400 time steps using the adaptive algorithm.
It can also track the poles accurately at other linearly ascending periods much
more effectively than the non-adaptive algorithm. TEadpt(3.78±0.05%) is lower
than TEnon-adpt(7.06±0.75%). We also see an increase in estimation power when
predicting the outputs in the test set from figure 3.5b. PEadpt(17.80±0.19%) is lower
than PEnon-adpt(20.77±0.05%, p < 0.0005) and above PEbaseline(13.70±0.002%). The
performance of the adaptive algorithm is better than the non-adaptive algorithm.

3.1.6 Simulations summary

From all five experimental simulations, the adaptive algorithm outperforms the non-
adaptive algorithm. The adaptive algorithm performs equally well as the non-adaptive
algorithm in the time-invariant case, and has a higher tracking ability and output
prediction in all the time-varying cases.

14

3.2 Effects of training and testing set length

From the experimental simulations, we observe all estimated poles converge quickly
within 500 time steps, for systems with poles changing smoothly or abruptly. So
we conclude the best value of Ttrain should be greater than 500 to fully observe the
convergence.

Besides the fast convergence, we also want to see how far can the algorithm predict
into the future, i.e. the test set, with the estimated model fixed at the end of the
training set. To test the prediction power, five experiments with Ttest equals to 10,
100, 500, 1000, and 5000, respectively, are computed for each time-varying system
with random-walk, step function and linearly ascending.

Figure 3.6: Prediction error (PE) of the estimated outputs in testing set.

Figure 3.6 shows the change in averaged PE’s of the 200 Monte Carlo simulations
as the test length increase from 10 to 5000 in log-scale. There is an observable
increase in PE as Ttest lengthens. Though all PEs have minimum variation at smaller
testing set length, they gradually increase along with larger testing set length. From
the experiments, the adaptive algorithm can reasonably predict into approximately
maximum of 1000 time steps of future data.

15

3.3 Effects of the forgetting factor

Another important parameter that influences the performance of the adaptive algo-
rithm is the forgetting factor, β. If the value of β is too small, then only a small set of
recent data are used to calculate the estimated system, resulting in poor performance
with large PE and TE. If the value of β is close to 1, then past data are weighted
almost as much as the recent data, which is against our original intention for this
adaptive algorithm.

Six simulations with β equals to 0.8, 0.95, 0.98, 0.99, 0.995, and 1 are computed
respectively for three cases of time-varying system: random walk, step function and
linearly ascending.

Figure 3.7: Prediction error (PE) associated with different β values

Figure 3.7 plots out averaged PE’s of 200 Monte Carlo simulations against the
value of β of the three time-varying cases, while figure 3.8 plots out the averaged
TE’s. PE’s and TE’s of all three cases decrease as the value of β increases from 0.8
to 0.99, and they increase as the value of β increases from 0.99 to 1. Based on TE
and PE, the optimal value of β seems to be 0.99.

16

Figure 3.8: Tracking error (TE) associated with different β values

The progressions of poles trajectories of each time-varying case are presented in
figure 3.9. For β = 0.8, the pole trajectories of all cases are poorly estimated with
large estimate variance. As the value of β increases from 0.8 to 0.98, the algorithm
starts to perform more accurately in tracking poles, which affirms the drops of TE
in figure 3.8. The estimate variance is also reduced as the value of β gets close to 1.
When β = 1, the algorithm cannot track any time-varying part of the system in all
cases, because the weights on past data equal to the weights on the recent data.

The performance of the algorithm with β = 0.98, 0.99, and 0.995 is very similar in
terms of pole tracking, but there is a difference in terms of rate of convergence to the
true poles. Closer the value of β to 1, more recent data are weighted in the algorithm,
so longer it takes to converge to the true poles. As the value of β increases from 0.98
to 0.995, we can see an increasing delay in pole convergence in the random walk case
in figure 3.9a and a slower convergence in the step function case in figure 3.9b. There
is change in poles at Ttrain/2 in the step function case. If we calculate the number
of time steps needed to converge, denote as tconv, the data at tconv is weighted in
approximately 1.5% in SSMadpt for β = 0.98, 0.99, and 0.995. This means that the
last data needed will approximately be weighted in by 1.5%. So greater the value
of β, longer it takes to converge. Based on the averaged pole trajectories, β = 0.99
appears to be an optimal value that gives a small estimation error while maintaining
a quick rate of convergence.

17

Figure 3.9: Poles trajectories of (a) random walk, (b) step function (c) linearly as-
cending with different β values

18

Chapter 4

Conclusion

In this work, we implement an adaptive subspace identification algorithm that can
estimate simulated time-invariant and time-varying state-space models with high ac-
curacy. The performance of algorithm is highlighted with some simulation examples.
They show that the algorithm can track the poles trajectories of the time-varying SSM
in an adaptive manner. By quantifying the performance with prediction error and
tracking error, the experimental results indicate the proposed adaptive identification
algorithm could better predict and track poles of the true time-varying system, as
compared to the traditional non-adaptive identification algorithm. We look into the
effect of the forgetting factor, observing a larger value provides us a better prediction
and tracking ability but a slower convergence to the true poles of the system matrix.
With forgetting factor equals to 0.99, the algorithm estimates the state-space models
with fast pole convergence regardless of the simulated systems. This leads us to con-
clude that the optimal length of training should be greater than 500, for time-varying
systems with either smooth or abrupt changes. We also demonstrated how far into
the future (length of testing set) could the algorithm predict reasonably with a fixed
model at the end of the training set.

4.1 Future work

As mentioned in the experiment set-up, in addition to value of the forgetting factor or
length of the training set, several other parameters can also affect the performance of
the adaptive algorithm. They includes the system order, number of outputs, number
of Monte Carlo simulations, and the true time-varying system configurations, such as
number of time-varying matrices, noise variance, initial poles values, pole waveforms
and more. This work set as a positive preliminary evaluation of the proposed adaptive
algorithm, and more simulations should be performed to validate and fine-tune the
system to specific needs.

19

Bibliography

[1] Y. Yang, E. Chang, and M. Shanechi, “Dynamic tracking of non-stationarity in
human ECoG activity,” Proc. IEEE Engineering in Medicine and Biology Society
Conference(EMBC), Jeju Island, Korea, pp. 1660–1663, 2017.

[2] P. Overschee and B. Moor, Subspace Identification for Linear Systems: Theory,
Implementation, Applications, vol. 3. Kluwer academic publishers Dordrecht,
1993.

[3] A. Connolly, Y. Yang, E. Chang, and M. Shanechi, “Modeling brain network
dynamics underlying mood disorders,” Society for Neuroscience (SFN), Chicago,
IL, 2015.

[4] Y. Yang and M. Shanechi, “A framework for identification of brain network
dynamics using a novel binary noise modulated electrical stimulation pattern,”
Proc. IEEE Engineering in Medicine and Biology Society Conference (EMBC),
pp. 2087–2090, 2015.

[5] Y. Yang and M. Shanechi, “An adaptive and generalizable closed-loop system
for control of medically induced coma and other states of anesthesia,” Journal of
Neural Engineering, vol. 13, p. 066019, Dec. 2016.

[6] P. Strobach and D. Goryn, “A computation of the sliding window recursive QR de-
composition,” in IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, pp. 29–32 vol.4, Apr. 1993.

[7] L. Ljung, System Iidentification. Wiley Online Library, 1999.

[8] J. Gibbons and S. Chakraborti, “Nonparametric statistical inference,” in Interna-
tional Encyclopedia of Statistical Science (M. Lovric, ed.), pp. 977–979, Springer
Berlin Heidelberg, 2011.

20

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	2 Methods
	2.1 Problem formulation
	2.2 Adaptive subspace identification algorithm
	2.3 Experiment set-up
	2.3.1 Training and testing of state-space model
	2.3.2 Experiment procedures
	2.3.3 Performance measures

	3 Simulation Results
	3.1 Time-invariant and time-varying systems
	3.1.1 Case 1: Time-invariant system
	3.1.2 Case 2: Time-varying system - random walk
	3.1.3 Case 3: Time-varying system - linearly ascending
	3.1.4 Case 4: Time-varying system - step function
	3.1.5 Case 5: Time-varying system - linearly ascending with step function
	3.1.6 Simulations summary

	3.2 Effects of training and testing set length
	3.3 Effects of the forgetting factor

	4 Conclusion
	4.1 Future work

	Bibliography

