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Identify significant events to generate SSIMS space
• each event denotes a 1 second long spike train 
 - Tasks: from 1s after the ‘go’ cue in each trial
 - Other categories: 
 events in top percentile of change in smoothed 
 mean threshold crossings after outlier elimination 
 (to avoid signal dropout and electronic noise)

Engaging di�erent e�ectors elicits di�erent neural activity patterns

3D SSIMS spaces of a session of T9 and T10 viewing from 2 orientations. One presents the 
clustering between directions, while another shows separation of tasks using di�erent e�ectors.

Victor and Purpura, 2011

Neural events cluster by volitional state
• 10-fold cross validated 5-Nearest-Neighbor (KNN) of 7 states: 81.18% ± 2.38% (chance: 17.82% ± 2.95% )
• Eating and watching TV di�cult to separate; potentially because T10 was watching TV while eating

• Brain-computer interfaces (BCIs) are designed to bypass damaged motor pathways 
and provide new links to assistive technologies for people with neuromotor deficits.

• It is widely accepted that motor cortex incorporates a mix of incoming sensory, 
cognitive, and motor planning information, reflecting latent variables that are not 
directly related to kinematic motor output.

• There is a need to reliably identify neural activity patterns indicative of a set of latent 
factors a�ected by task and cognitive context changes to build BCI systems that 
support continuous, multi-e�ector use.

• Studies previously showed successful decoding of contextual changes in idle vs. active 
states (Lesenfants et. al, SfN, 2016), and controlling di�erent end e�ectors (Fasoli et. 
al., APMR, 2017).

• We present clustering of the projections of neural data representing di�erent 
context-dependent volitional states using an approach that visualizes data by 
generating low-dimensional state spaces based solely on the intrinsic similarity of 
single unit ensemble recordings.

(1) Full day continuous neural recording of BCI use and daily activities
• 26-hour continuous wireless recording from T10 performing center out task (a), grid task (c), 

and other daily activities
(2) Cursor vs robotic arm control

• In each recording session (8 for T9 and 4 for T10), the decoder was first calibrated on one 
e�ector using open-loop imagery and then closed-loop decoder calibration. The decoder 
then ran on blocks (each consisting of many trials of the same task) that alternated between 
the two e�ectors.

• Participants were instructed to move either a computer cursor (a) or a JACO robotic arm (b) 
to a cued target with no instructed delay in a center-out task.

Setup

Blackrock Microsystem Inc. array

Participants (enrolled in BrainGate2 pilot clinical trial, IDE*) 
• T9: 52 year-old male with tetraplegia due to amyotrophic lateral sclerosis (ALSFRS-R of 8).   
   Two 96-channel microelectrode arrays implanted both on left precentral gyrus (PCG).
• T10: 35 year-old male with tetraplegia due to spinal cord injury (C4 AIS-A). Two 96-channel
   microelectrode arrays, one each on the left middle frontal gyrus (MFG) and left PCG.

• State space models based on intrinsic activity pattern similarity can be used to:
 (1) detect context-dependent changes in volitional state across daily activities
 (2) di�erentiate between the intention to engage di�erent e�ectors (cursor vs. robot)
• Motor cortex contains information about volitional states, in addition to intended movements.
• Future work includes 

- comparing various dimensionality reduction techniques; 
- investigating non-stationarity across days, obtaining more than one day of continuous 
data;
- using these data to support the development of a highly interactive BCI system that 
enables continuous, multi-e�ector use for people with tetraplegia.

Acknowledgements: The authors would like to thank participants T9, T10 and their families, Beth Travers, and Dave 
Rosler for their contributions to this research. 

Support provided by O�ce of Research and Development, Rehabilitation R&D Service, Department of Veterans A�airs 
(N9288C, N2864C, B6453R), NIDCD (R01DC009899), NINDS (UH2NS095548), NICHD-NCMRR (R01HD077220), 
NINDS (U01NS098968), MGH-Deane Institute, The Executive Committee on Research (ECOR) of Massachusetts 
General Hospital.

* The contents do not represent the views of the Department of Veterans A�airs or the US Government. CAUTION: Investigational Device. Limited by Federal 

Law to Investigational Use.

(a) center-out task controlled 
with a computer cursor

(c) grid task

Spike Train SIMilarity Space (SSIMS) (Vargas-Irwin et. al., 2015)

• Step 1: compute similarity metrics between pairs of spike trains by calculating the 
cost to transform one spike train to another with inserting, deleting, or shifting spikes 
(Victor and Purpura, 2011)

• Step 2: perform dimensionality reduction using t-Distributed Stochastic Neighbor 
Embedding (van der Maaten, 2008)

• These state space projections can be used to identify clusters of similar, recurring 
activity patterns, without the need to define task-related tuning models for individual 

• each point repersents one trial; use spike trains 2.5s before target is acquired
• 10-fold cross validated KNN (K=3) accuracy averaged across all sessions: 
 direction classification - T9 : 63.52 ± 9.20%  and T10 : 43.57 ± 7.63%
 e�ector classification   - T9 : 97.58 ± 1.55%  and T10 : 87.94 ± 5.17%

T10 (trial day 333)T9 (trial day 482)

tsam_kiu_pun@brown.edu

Data Acquisition
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(b) center-out task controlled 
with a JACO robotic arm

DATA SELECTION: 26-HOUR RECORDING

RESULTS: 26-HOUR RECORDING
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